Sciences physiques 20

Dernière mise à jour : Mar 10, 2017

Introduction

Le programme d'études de *Sciences physiques 20* présente le contenu d'apprentissage s'adressant aux élèves de 11e année et il est fondé sur le Protocole pancanadien (Cadre commun de résultats d'apprentissage en sciences de la nature).

Ce document présente les grandes orientations de l'apprentissage pour les élèves de la Saskatchewan, les compétences transdisciplinaires des programmes d'études de la Saskatchewan et les buts des sciences.

L'enseignement des sciences au secondaire

Au secondaire et à partir de la 11e année, le programme de sciences de la Saskatchewan est organisé en différentes voies. Le schéma ci-dessous illustre les différentes voies et cours, ainsi que les liens entre eux.

Sciences 10

Informatique 20

Sciences de la santé 20

Sciences de l'environnement 20

Sciences physiques 20

Informatique 30

Biologie 30

Sciences de la Terre 30

Physique 30

Chimie 30

Sciences au secondaire et préalables

Selon les exigences en sciences pour le diplôme de fin d'études secondaires, les élèves doivent avoir un cours de sciences 10 (ou 11) et un cours de sciences 20 (ou 21).

Les différentes voies en sciences permettent le développement de la littératie scientifique chez tous les élèves, qui est constituée d'un ensemble évolutif d'attitudes, d'habiletés et de connaissances en sciences; la culture scientifique permet à l'élève de développer ses aptitudes liées à la recherche scientifique, de résoudre des problèmes, de prendre des décisions, d'avoir le gout d'apprendre tout au long de sa vie et de maintenir un sens d'émerveillement du monde qui l'entoure. (CMEC, Cadre commun des résultats d'apprentissage en sciences de la Nature M à 12 : Protocole pancanadien pour la collaboration en matière de programmes scolaires, 1997, p.4.)

Lors de leur choix de cours, les élèves devraient tenir compte de leurs champs d'intérêt tant présents que futurs. Les élèves, les parents et les enseignants sont encouragés à rechercher les préalables d'admission dans divers programmes d'études postsecondaires, car ceux-ci varient d'une institution à l'autre et d'une année à l'autre.

Cadre de référence de l'éducation fransaskoise

L'éducation fransaskoise englobe le programme d'enseignementapprentissage en français langue première qui s'adresse aux enfants de parents ayant droit en vertu de l'Article 23 de la Charte *canadienne des droits et libertés*. L'éducation fransaskoise soutient l'actualisation maximale du potentiel d'apprentissage de l'élève et, de manière intentionnelle, la construction langagière, identitaire et culturelle dans un contexte de dualité linguistique. L'élève peut ainsi manifester sa citoyenneté francophone, bilingue.

On ne nait pas francophone, on le devient selon le degré et la qualité de socialisation dans cette langue. (Landry, Allard et Deveau, 2004)

En Saskatchewan, les programmes d'études pour l'éducation fransaskoise :

- valorisent le français dans son statut de langue première;
- soutiennent le cheminement langagier, identitaire et culturel de l'élève;
- favorisent la construction, par l'élève, des savoirs, savoir-faire, savoir-être, savoir-vivre ensemble et savoirdevenir comme citoyen et citoyenne francophone;
- soutiennent le développement du sens d'appartenance de l'élève à la communauté fransaskoise;
- favorisent la contribution de l'élève à la vitalité de la communauté fransaskoise;
- soutiennent la citoyenneté francophone, bilingue, de l'élève.

La construction langagière, identitaire et culturelle (CLIC)

La langue est l'ADN de votre culture. (Gilles Vigneault, 2010)

La construction langagière, identitaire et culturelle (CLIC) est un processus continu et dynamique au cours duquel l'élève développe sa compétence en français, son unicité et sa culture francophone. Ceci se fait en interaction avec d'autres personnes, ses groupes d'appartenance et son environnement. L'élève détermine la place de la langue française et de la culture francophone dans sa vie actuelle et dans celle de demain. L'élève nourrit son sens d'appartenance à la communauté fransaskoise. L'élève devient ainsi un citoyen ou une citoyenne francophone, bilingue, dans un contexte canadien de dualité linguistique.

La construction langagière permet à l'élève :

- de développer des façons de penser, de comprendre et de s'exprimer en français;
- d'avoir des pratiques langagières en français, au quotidien;
- de se sentir compétent ou compétente en français dans des contextes structurés et non structurés;
- d'interagir de manière spontanée en français dans sa vie personnelle, scolaire et sociale;
- d'utiliser la langue française dans les espaces publics;
- d'utiliser les médias et les technologies de l'information et des communications en français.

La construction identitaire permet à l'élève :

 de comprendre sa réalité francophone dans un contexte où se côtoient au moins deux langues qui n'occupent pas les mêmes espaces dans la société; Être francophone ne se conjugue pas à l'impératif. (Marianne Cormier, 2005)

- d'exercer un pouvoir sur sa vie en français;
- d'expérimenter des façons d'agir en français dans des contextes non structurés;
- de s'engager dans une perspective d'ouverture à l'autre;
- d'avoir de l'influence sur une personne ou un groupe;
- d'adopter des habitudes de vie quotidienne en français;
- de prendre sa place dans la communauté fransaskoise; ¿ de se reconnaître comme francophone, bilingue, aujourd'hui et à l'avenir.

La construction culturelle permet à l'élève :

- de s'approprier des façons de faire et de dire et de vivre ensemble propres aux cultures francophones : familiale, scolaire, locale, provinciale, nationale, internationale et virtuelle;
- d'explorer, de créer et d'innover dans des contextes structurés et non structurés;
- de créer des liens avec la communauté fransaskoise afin de nourrir son sens d'appartenance;
- de valoriser des référents culturels fransaskois et francophones;
- de créer des situations de vie en français avec les autres.

La construction langagière, identitaire et culturelle soutient le développement de la citoyenneté francophone, bilingue de l'élève. Cela lui permet :

Ça prend tout un village pour éduquer un enfant. (proverbe africain)

- d'établir son réseau en français dans la communauté fransaskoise et francophone;
- de mettre en valeur ses compétences dans les deux langues officielles du Canada;
- de s'informer, de réfléchir et d'évaluer de manière critique ce qui se passe dans son milieu;
- de réfléchir de manière critique sur ses perceptions à l'égard de sa langue, de son identité et de sa culture francophones;
- de connaître ses droits et ses responsabilités en tant que francophone;
- de comprendre le fonctionnement des institutions publiques et des organismes et services communautaires francophones;
- de vivre des expériences signifiantes pour elle ou lui dans la communauté fransaskoise;
- de contribuer au bienêtre collectif de la communauté fransaskoise.

Principes de l'enseignement et de l'apprentissage du français en immersion

Les principes de base suivants pour le programme d'immersion proviennent de la recherche effectuée en didactique des langues secondes. Cette recherche porte sur l'acquisition d'une deuxième langue, les pratiques pédagogiques efficaces, les expériences d'apprentissage signifiantes et la façon dont le cerveau fonctionne. Ces principes doivent être pris en compte constamment dans un programme d'immersion française.

En immersion, il faut enseigner le français comme une langue seconde dans toutes les matières. (Netten, 1994, p. 23)

Les occasions d'apprendre le français ne doivent en aucun cas être réservées à la classe de langue, mais doivent se trouver au contraire intégrées à tous les autres domaines d'étude obligatoires.

Le langage est un outil qui satisfait le besoin humain de communiquer, de s'exprimer, de véhiculer sa pensée. C'est, en outre, un instrument qui permet l'accès à de nouvelles connaissances.

Les élèves apprennent mieux la langue cible :

quand celle-ci est considérée comme un outil de communication

Dans la vie quotidienne, toute communication a un sens et un but : (se) divertir, (se) documenter, partager une opinion, chercher à résoudre des problèmes ou des conflits. Il doit en être ainsi de la communication effectuée dans le cadre des activités d'apprentissage et d'enseignement qui se déroulent en classe.

La langue cible est avant tout un moyen de communication qui permet de véhiculer sa pensée, des idées et des sentiments.

quand ils ont de nombreuses occasions de l'utiliser, en particulier en situation d'interaction

Il faut que les élèves aient de nombreuses occasions de s'exprimer à l'oral comme à l'écrit tout au long de la journée, dans divers contextes.

quand ils ont de nombreuses occasions de réfléchir à leur apprentissage

Les activités d'apprentissage doivent viser à faire prendre conscience à l'apprenant des stratégies dont il dispose pour la compréhension et la production en langue seconde : il s'agit de faire acquérir des « savoirfaire » pour habiliter l'apprenant à s'approprier des « savoirs ».

Une classe d'immersion doit être le cadre d'une interaction constante.

Il faut utiliser la langue comme outil d'apprentissage pour comprendre et pour s'exprimer.

quand ils ont de nombreuses occasions d'utiliser la langue française comme outil de structuration cognitive

Les activités d'apprentissage doivent permettre aux élèves de développer une compétence langagière qui leur permet de s'exprimer en français en même temps qu'ils observent, explorent, résolvent des problèmes, réfléchissent et intègrent à leurs connaissances de nouvelles informations sur les langues et sur le monde qui les entoure.

quand les situations leur permettent de faire appel à leurs connaissances antérieures

Quand les élèves ont l'occasion d'activer leurs connaissances antérieures et de relier leur vécu à la situation d'apprentissage, ils font des liens et ajoutent à leur répertoire de stratégies pour soutenir la compréhension et pour faciliter l'accès à de nouvelles notions. Les élèves doivent pouvoir exercer les fonctions cognitives dans leur langue seconde.

quand les situations d'apprentissage sont signifiantes et interactives

Quand les élèves s'engagent dans des expériences significatives, dans lesquelles il y a une intention de communication précise et un contexte de communication authentique, ils s'intéressent à leur apprentissage et ont tendance à faire le transfert de leurs acquis linguistiques à d'autres contextes.

quand il y a de nombreux et fréquents contacts avec le monde francophone et sa diversité linguistique et culturelle

Les contacts avec le monde francophone permettent aux élèves d'utiliser et d'enrichir leur langue seconde dans les situations vivantes, pertinentes et variées. En immersion, l'école est, dans la majorité des cas, le seul lieu où les élèves ont l'occasion d'être exposés à la langue française.

quand ils sont exposés à d'excellents modèles de langue

Il est primordial que l'école permette aux élèves d'entendre parler la langue française et de la lire le plus souvent possible, et que cette langue leur offre un très bon modèle.

Protocole de collaboration concernant l'éducation de base dans l'Ouest canadien (de la maternelle à la douzième année), Cadre commun des résultats d'apprentissage en français langue seconde - immersion (M-12), 1996, p. x.

Grandes orientations de l'apprentissage

Le ministère de l'Éducation de la Saskatchewan s'est donné trois grandes orientations pour l'apprentissage : l'apprentissage tout au long de sa vie, le sens de soi, de ses racines et de sa communauté et une citoyenneté engagée. Les grandes orientations de l'apprentissage représentent les caractéristiques et les savoir-être que l'on souhaite retrouver chez le finissant et la finissante de 12e année de la province. Les descriptions suivantes montrent l'éventail de connaissances (déclaratives, procédurales, conditionnelles ou métacognitives) que l'élève

L'élève est au coeur de ses apprentissages et en interaction avec le monde qui l'entoure.

(déclaratives, procédurales, conditionnelles ou métacognitives) que l'élève acquerra tout au long de son cheminement scolaire.

L'apprentissage tout au long de sa vie

L'élève, engagé dans un processus d'apprentissage tout au long de sa vie, continue à explorer, à réfléchir et à se construire de nouveaux savoirs. Il démontre l'ouverture nécessaire pour découvrir et comprendre le monde qui l'entoure. Il est en mesure de s'engager dans L'élève nourrit ainsi son ouverture à l'apprentissage continu tout au long de sa vie.

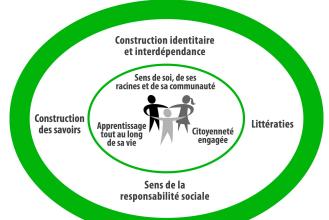
des apprentissages, dans sa vie scolaire, sociale, communautaire et culturelle. Il vit des expériences variées qui enrichissent son appréciation de diverses visions du monde. Il fait preuve d'ouverture d'esprit et de volonté pour apprendre tout au long de la vie.

Le sens de soi, de ses racines et de sa communauté

L'élève perçoit positivement son identité personnelle. Il comprend la manière dont celle-ci se construit et ce, en interaction avec les autres et avec l'environnement naturel et construit. Il est en mesure de cultiver des relations positives. Il sait reconnaître les valeurs de diverses croyances, langues et habitudes de vie de toutes les cultures des

L'élève apprend à se connaitre en étant en relation avec les autres et avec différentes communautés. Sa contribution personnelle ainsi que celle des autres sont reconnues.

citoyens et citoyennes de la province, entre autres celles des Premières Nations de la Saskatchewan (les Dakotas, les Lakotas, les Nakotas, les Anishinabés, les Nêhiyawaks et les Dénés) et des Métis. L'élève acquiert ainsi une connaissance approfondie de lui-même, des autres et de l'influence de ses racines. Il renforce ainsi son sens de soi, de ses racines, de sa communauté et cela soutient son identité personnelle dans toutes ses dimensions.


Une citoyenneté engagée

L'élève qui développe une citoyenneté engagée établit des liens avec sa communauté et s'informe de ce qui se passe dans son environnement naturel et construit. Il reconnait ses droits et ses responsabilités. Il L'élève respecte l'interdépendance des environnements physiques et sociaux.

accorde aussi une importance à l'action individuelle et collective en lien avec la vie et les enjeux de sa communauté. L'élève prend des décisions réfléchies à l'égard de sa vie, de sa carrière et de son rôle de consommateur en tenant compte de l'interdépendance des environnements physiques, économiques et sociaux. Il reconnait et respecte les droits de tous et chacun, entre autres ceux énoncés dans la Charte canadienne des droits et libertés et dans les traités. Cela lui permet de vivre en harmonie avec les autres dans des milieux multiculturels en prônant des valeurs telles que l'honnêteté, l'intégrité et d'autres qualités propres aux citoyennes et citoyens engagés.

Les compétences transdisciplinaires

Le ministère de l'Éducation de la Saskatchewan a établi quatre compétences transdisciplinaires : la construction des savoirs, la construction identitaire et l'interdépendance, l'acquisition des littératies et l'acquisition du sens de la responsabilité sociale. Ces compétences ont pour but d'appuyer l'apprentissage de l'élève.

La construction des savoirs

L'élève qui construit ses savoirs se questionne, explore, fait des hypothèses et modifie ses représentations. Il fait des liens entre ses connaissances antérieures et les nouvelles informations afin de transformer ce qu'il sait et de créer de nouveaux savoirs. Il se construit ainsi une compréhension du monde qui l'entoure.

L'élève qui construit ses savoirs est engagé cognitivement et affectivement dans son apprentissage.

La construction identitaire et l'interdépendance

L'élève construit son identité en interaction avec les autres, le monde qui l'entoure et ses diverses expériences de vie. Il peut soutenir l'interdépendance qui existe dans son environnement naturel et construit par le dévelopmement d'une conscience de soi et de l'autre.

L'élève qui développe son identité sait qui il est et se reconnait par sa façon de réfléchir, d'agir et de vouloir. (ACELF)

construit par le développement d'une conscience de soi et de l'autre, d'habiletés à vivre en harmonie avec les autres et de la capacité de prendre des décisions responsables. Il peut ainsi favoriser la réflexion et la croissance personnelles, la prise en compte des autres et la capacité de contribuer au développement durable de la collectivité.

L'acquisition des littératies

L'élève qui acquiert diverses littératies a de nombreux moyens d'interpréter le monde, d'en exprimer sa compréhension et de communiquer avec les autres. Il possède des habiletés, des stratégies, des conventions et des modalités propres à toutes sortes de disciplines qui lui permettent une participation active à une variété de situations de vie. Il utilise ainsi ses compétences pour contribuer à la vitalité d'un monde en constante évolution.

Les littératies renvoient à l'ensemble des habiletés que possède l'élève à écrire, à lire, à calculer, à traiter l'information, à observer et interpréter le monde et à interagir dans une variété de situations.

L'acquisition du sens de la responsabilité sociale

L'élève qui acquiert le sens de la responsabilité sociale peut contribuer de façon positive à son environnement physique, social et culturel. Il a conscience des dons et des défis propres à chaque personne et à chaque communauté. Il peut aussi collaborer avec les autres à la création d'un espace éthique qui favorise le dialogue à l'égard de préoc

L'élève apporte son aide ou son soutien de manière à respecter la dignité et les capacités des personnes concernées.

création d'un espace éthique qui favorise le dialogue à l'égard de préoccupations mutuelles et à la réalisation de buts communs.

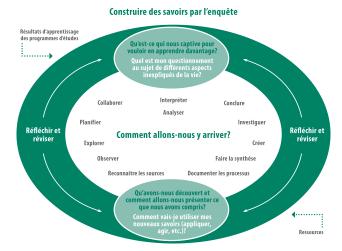
Mesure et évaluation

La mesure est un processus de collecte de données qui fournit des informations sur l'apprentissage de l'élève. Ce processus comprend entre autres la réflexion, la rétroaction et les occasions d'amélioration avant le jugement. C'est ce jugement qui représente l'évaluation des apprentissages de l'élève.

La mesure indique ce que l'élève sait, ce qu'il comprend et ce qu'il peut faire.

Il existe trois buts de la mesure et de l'évaluation : l'évaluation pour l'apprentissage qui vise à accroître les acquis, l'évaluation en tant qu'apprentissage qui permet de favoriser la participation active de l'élève à son apprentissage et enfin, l'évaluation de l'apprentissage qui cherche à porter un jugement sur l'atteinte des résultats d'apprentissage.

L'évaluation indique le niveau de réalisation des résultats d'apprentissage.


Mesure		Évaluation
Évaluation formative - continue dans la salle de classe		Évaluation sommative - ayant lieu à la fin de l'année ou à des étapes cruciales
Évaluation pour l'apprentissage	Évaluation en tant qu'apprentissage	Évaluation de l'apprentissage
 rétroaction par l'enseignant, réflexion de l'élève et rétroaction des pairs appréciation fondée sur les résultats d'apprentissage du programme d'études, traduisant la réalisation d'une tâche d'apprentissage précise révision du plan d'enseignement en tenant compte des données recueillies 	 autoévaluation informations données à l'élève sur son rendement l'incitant à réfléchir aux moyens à prendre pour améliorer son apprentissage critères établis par l'élève à partir de ses apprentissages et de ses objectifs d'apprentissage personnels adaptations faites par l'élève à son processus d'apprentissage en fonction des informations reçues 	 évaluation par l'enseignant fondée sur des critères établis provenant des résultats d'apprentissage jugement du rendement de l'élève par rapport aux résultats d'apprentissage transmission du rendement de l'élève aux parents ou aux tuteurs, au personnel de l'école et des divisions scolaires * Cette évaluation peut être normative, c'est-à-dire basée sur la comparaison du rendement de l'élève à celui des autres.

Apprentissage par enquête

L'apprentissage par enquête est une approche philosophique de l'enseignement-apprentissage de la construction des savoirs favorisant une compréhension approfondie du monde. Cette approche est ancrée dans la recherche et dans les modèles constructivistes. Elle permet à l'enseignante d'aborder des concepts et du contenu à partir du vécu, des intérêts et de la curiosité des élèves pour donner du sens au monde qui les entoure. Elle facilite l'engagement actif dans un cheminement personnel, collaboratif et collectif tout en développant le sens de la responsabilité et l'autonomie. Elle offre à l'élève des occasions :

- de développer des compétences tout au long de sa vie;
- d'aborder des problèmes complexes sans solution prédéterminée;
- · de remettre en question des connaissances;
- d'expérimenter différentes manières de chercher une solution;
- d'approfondir son questionnement sur le monde qui l'entoure.

Dans l'apprentissage par enquête, l'élève vit un va-et-vient entre ses découvertes, ses perceptions et la construction d'un nouveau savoir. L'élève a ainsi le temps de réfléchir sur ce qui a été fait et sur la façon dont il l'a fait, ainsi que sur la façon dont cela lui serait utile dans d'autres situations d'apprentissage et dans la vie courante.

Construction des savoirs par l'enquête

La construction des savoirs par enquête est un processus d'exploration et d'investigation qui structure l'organisation de l'enseignement-apprentissage. Il permet à l'élève de participer activement à l'élaboration et l'exploitation des questions captivantes. Ainsi, l'élève garde sous différentes formes des traces de sa réflexion, de son questionnement, de ses réponses et des différentes perspectives. Cela peut devenir une source d'évaluation des apprentissages et du processus lui-même. Cette documentation favorise un regard en profondeur de ce que l'élève sait, comprend et peut faire.

Ce processus comprend différentes phases non linéaires telles que *planifier, recueillir, traiter, créer, partager et évaluer*, avec des points de départ et d'arrivée variables. La réflexion métacognitive soutient ce processus. Des questions captivantes sur des sujets, problèmes ou défis se rapportant aux concepts et au contenu à l'étude déclenchent le processus d'enquête.

Une question captivante :

- s'inspire du vécu, des intérêts et de la curiosité de l'élève;
- provoque l'investigation pertinente des idées importantes et de la thématique principale;
- suscite une discussion animée et réfléchie, un engagement soutenu, une compréhension nouvelle et l'émergence d'autres questions;
- oblige à l'examen de différentes perspectives, à un regard critique sur les faits, à un appui des idées et à une justification des réponses;
- incite à un retour constant et indispensable sur les idées maitresses, les hypothèses et les apprentissages antérieurs;
- favorise l'établissement de liens entre les nouveaux savoirs, l'expérience personnelle, l'accès à l'information par la mémoire et le transfert à d'autres contextes et matières.

Lors de cette démarche d'enquête, l'élève participe activement à l'élaboration des questions captivantes. Il garde sous différentes formes des traces de sa réflexion, de son questionnement, de ses réponses et des différentes perspectives. Cela peut devenir une source d'évaluation des apprentissages et du processus lui-même. Cette documentation favorise un regard en profondeur de ce que l'élève sait, comprend et peut faire.

En sciences, les enseignants et les élèves peuvent se servir des quatre contextes d'apprentissage (l'enquête scientifique, la résolution de problèmes technologiques, la prise de décision STSE et les perspectives culturelles - voir plus loin dans le présent document pour plus de détails) comme amorce pour commencer la démarche d'enquête. Cette démarche peut devenir une occasion d'apprentissage interdisciplinaire reflétant la nature holistique de notre vie et de l'environnement mondial interdépendant.

Défis-sciences

Les défis-sciences, qui peuvent comprendre les expo-sciences, les ligues de sciences, les olympiades de sciences ou les recherches de talents devraient être considérés comme des méthodes d'enseignement appropriées pour les élèves, pour une unité, plusieurs unités ou en conjonction avec d'autres matières. Les enseignants peuvent incorporer des activités de défis-sciences dans le cadre du programme de sciences ou les traiter comme activités parascolaires, comme les sports ou les clubs scolaires. Si les défis-sciences se font dans le cadre des activités en classe, les enseignants devraient prendre ces directives en considération. Elles ont été adaptées du document intitulé *Position Statement on Science Competitions*, de la National Science Teachers Association (1999) :

- La participation des élèves et du personnel doit être volontaire et ouverte à tous les élèves.
- L'accent doit être mis sur l'expérience d'apprentissage plutôt que sur la compétition.
- Les concours scientifiques doivent compléter et mettre en valeur d'autres enseignements, et soutenir la réalisation d'autres résultats d'apprentissage du programme.
- Les projets et présentations doivent être le résultat du travail des élèves, tout en reconnaissant le mérite des autres personnes pour leurs contributions.
- Les concours scientifiques doivent favoriser le partenariat entre les élèves, l'école et la communauté scientifique.

Les activités de défis-sciences peuvent se tenir uniquement au niveau de l'école ou pour préparer les élèves à l'une des expositions régionales ou, éventuellement, comme une étape en vue de l'Expo-sciences pancanadienne. Même si les élèves peuvent être motivés par les prix, les récompenses et la possibilité de bourses, les enseignants doivent souligner que dans la réalisation d'un projet d'expo-sciences, l'important est de faire de nouvelles expériences et d'acquérir de nouvelles habiletés qui vont au-delà des sciences, de la technologie ou du génie. Les élèves apprennent à présenter leurs idées à un public authentique, qui peut être constitué de parents, d'enseignants et de scientifiques de haut niveau dans un domaine donné.

En règle générale, les projets d'expos-sciences prennent la forme suivante :

- Une expérience, qui est une expérience scientifique originale à partir d'hypothèses précises et originales. Les élèves doivent contrôler toutes les variables importantes et faire la démonstration de techniques appropriées de collecte et d'analyse des données.
- Une étude, qui consiste à recueillir des données pour révéler une régularité ou une corrélation. Les études peuvent porter sur des relations de cause à effet et des investigations théoriques sur des données.
- Une enquête portant sur des sujets humains; une innovation, qui traite de la création et du développement d'un nouveau dispositif, d'un nouveau modèle ou d'une nouvelle technique dans le domaine technologique. Ces innovations peuvent avoir des applications commerciales ou profiter aux humains.

La Fondation Sciences Jeunesse Canada (http://www.youthscience.ca/fr) donne d'autres informations sur les expossciences au Canada.

Les finalités et les buts du programme

Le programme d'études de sciences de la Saskatchewan a pour but desoutenir le développement de la culture scientifique chez tous les élèves, compte tenu du fait qu'aujourd'hui, cette culture englobe les patrimoines eurocanadien et autochtone. Le programme vise le développement de la littératie scientifique chez tous les élèves :

« Constituée d'un ensemble évolutif d'attitudes, d'habiletés et deconnaissances en sciences, [la culture scientifique] permet à l'élève dedévelopper ses aptitudes liées à la recherche scientifique, de résoudre des problèmes, de prendre des décisions, d'avoir le gout d'apprendre tout au long de sa vie et de maintenir un sens d'émerveillement du monde qui l'entoure. » (CMEC, Cadre commun des résultats d'apprentissage en sciences de la nature M à 12 : Protocole pancanadien pour la collaboration en matière de programmes scolaires, 1997, p. 4)

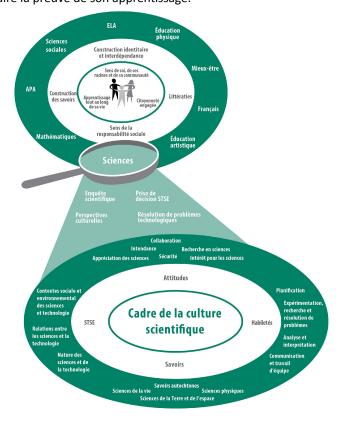
Le ministère de l'Éducation a établi quatre buts fondamentaux àl'égard de l'enseignement des sciences en Saskatchewan. Il s'agitd'énoncés généraux indiquant ce que l'élève devrait savoir et être apte àfaire au terme de l'apprentissage d'un domaine d'étude donné. Laformulation de ces buts reflète les principes de base de la culturescientifique énoncés dans le *Cadre commun de résultats d'apprentissageen sciences de la nature M à 12 (CMEC, 1997)*.

Voici les quatre buts définis dans le programme de sciences M à 12 :

- Comprendre la nature de la science et des relations sciences, technologie, société et environnement
 (STSE)L'élève développera sa compréhension de la nature de la science et de la technologie, des relations entre
 la science et la technologie ainsi que des contextes social et environnemental dans lesquels s'inscrivent la
 science et la technologie, y compris des rapports entre le monde naturel et le monde construit.
- Construire les connaissances scientifiques L'élève construira sa connaissance et sa compréhension des concepts, principes, lois et théories des sciences de la vie, sciences physiques et sciences de la Terre et de l'espace, et appliquera ces acquis pour interpréter, intégrer et élargir ses connaissances théoriques et pratiques.
- **Développer des habiletés et des attitudes scientifiques et technologiques**L'élève développera les habiletés nécessaires pour mener des investigations scientifiques et technologiques, résoudre des problèmes et communiquer pour travailler en collaboration et pour prendre des décisions éclairées.
- **Développer des attitudes qui appuient les habitudes mentales scientifiques**L'élève développera des attitudes qui l'aideront à acquérir et à appliquer de façon responsable des connaissances scientifiques et technologiques, de même que le savoir autochtone, pour son plus grand bien et pour celui de la société et de l'environnement.

Un programme efficace d'enseignement des sciences

Pour être efficace, un programme d'enseignement des sciences doit aider l'élève à atteindre ses résultats d'apprentissage :


- en intégrant tous les principes de base de la culture scientifique;
- en partant des contextes d'apprentissage comme points d'amorce des recherches de l'élève;
- en maitrisant la terminologie scientifique et en sachant en faire bon usage;
- en aboutissant à des expériences pratiques en laboratoire comme sur le terrain;
- en assurant la sécurité;
- en préconisant un choix et un usage judicieux des moyens techniques.

Dans le domaine des sciences, tous les résultats d'apprentissage de l'élève et leurs indicateurs de réalisation ont été établis à partir d'un ou de plusieurs principes de base de la culture scientifique; c'est là le « quoi » du programme d'études en sciences. Le « comment » est représenté quant à lui par les contextes dans lesquels s'effectue cet apprentissage, autrement dit les différents processus par lesquels les élèves s'engagent dans la poursuite des résultats visés à terme par le programme. Les quatre domaines d'étude servent à organiser le programme et à lui donner sa structure.

De la même manière que les scientifiques construisent des modèles reposant sur des preuves empiriques pour démontrer leurs hypothèses, l'élève qui étudie les sciences devra aussi entreprendre des activités analogues dans le cadre d'une démarche d'enquête véritable. Il est essentiel que l'élève observe en tout temps les mesures de sécurité.

La technologie, quant à elle, sert ici à étendre la portée des observations et à favoriser la mise en commun de l'information recueillie. L'élève se sert d'une diversité d'outils techniques pour recueillir et analyser l'information, pour l'illustrer et la représenter, ainsi que pour communiquer et collaborer tout au long du programme de sciences.

Pour acquérir la culture scientifique que propose le programme, l'élève est appelé à participer de façon croissante à la planification, à l'élaboration et à l'évaluation de ses propres activités d'apprentissage. Ce faisant, l'élève a la possibilité de travailler en collaboration avec d'autres, de faire des recherches, d'en communiquer les conclusions et de réaliser des projets pour faire la preuve de son apprentissage.

Les principes de base de la culture scientifique

Les fondements de la formation scientifique de la maternelle à la 12e année rejoignent les principes de base de la culture scientifique tels qu'ils sont décrits dans le *Cadre commun de résultats d'apprentissage en sciences de la nature M à 12* (CMEC, 1997, pp. 6-18). Ces quatre principes de base définissent les principes de base de la culture scientifique des élèves. Ils rendent compte de la globalité et de l'interconnexion de l'apprentissage et doivent être considérés comme se complétant et s'appuyant les uns les autres.

1er principe de base : Les interrelations entre la science, la technologie, la société et l'environnement (STSE)

Ce principe de base porte sur la compréhension de la science, sur sa nature, sa portée et ses interactions avec la technologie, ainsi que sur le contexte social et environnemental dans lesquels elle se développe. C'est là l'élément essentiel de la culture scientifique. Ce principe de base s'appuie sur les trois dimensions fondamentales suivantes :

Nature de la science et de la technologie

La science est une activité sociale et culturelle ancrée dans une tradition intellectuelle donnée. C'est une façon parmi d'autres d'envisager la nature, qui fait appel à la curiosité, à l'imagination, à l'intuition, à l'exploration, à l'observation, à la réplication, à l'interprétation des résultats et à la recherche de consensus à l'égard des preuves réunies et de leur interprétation. Plus que la plupart des autres moyens de connaître la nature, la science excelle à prédire ce qui se produira, en s'appuyant sur ses descriptions et ses explications des phénomènes naturels et technologiques.

Les idées basées sur la science sont continuellement mises à l'épreuve, modifiées et améliorées à mesure que de nouvelles idées viennent remplacer les anciennes. Tout comme la science, la technologie est une activité humaine créative ayant pour objet de résoudre des problèmes pratiques découlant de besoins humains ou sociaux et, plus particulièrement, de la nécessité de s'adapter à l'environnement et de stimuler l'économie nationale. Les activités de recherche et de développement mènent à l'élaboration de nouveaux produits et procédés issus du processus d'enquête et de conception.

Interactions entre la science et la technologie

De tout temps, les perfectionnements de la technologie ont été intimement liés aux progrès de la science, l'une contribuant à la progression de l'autre. Alors que la science vise essentiellement le développement et la vérification du savoir, la technologie, elle, se concentre sur l'élaboration de solutions - dont des dispositifs et des systèmes - visant à répondre à un besoin donné dans le cadre des contraintes posées par un problème. Alors que la vérification du savoir scientifique vise à expliquer, interpréter et prédire, la mise à l'essai d'une solution technologique cherche à établir que cette solution est efficace et aide effectivement à atteindre le but visé.

Contexte social et environnemental de la science et de la technologie

L'histoire de la science nous a appris que l'entreprise scientifique s'inscrit dans un contexte social qui comprend des forces économiques, politiques, sociales et culturelles, et qui est marqué par des préjugés personnels et par le besoin d'une reconnaissance et d'une acceptation par les pairs. De nombreux exemples démontrent que les traditions culturelles et intellectuelles ont eu une influence, dans le passé, sur l'objet et la méthodologie de l'activité scientifique, et que, réciproquement, la science a eu une influence sur le monde plus vaste des idées. De nos jours, ce sont souvent les besoins et les enjeux sociétaux et environnementaux qui dictent l'orientation que prendra la recherche scientifique, et à mesure que des solutions technologiques résultent de recherches antérieures, bien des technologies nouvelles entrainent des problèmes sociaux et environnementaux complexes à leur tour, ces problèmes viennent alimenter de plus en plus le contenu des programmes politiques. La science, la technologie et le savoir autochtone peuvent aider à renseigner et à consolider le processus décisionnel des individus, des collectivités et de la société dans son ensemble.

2e principe de base : Le savoir scientifique

Ce principe de base concerne l'essence même du savoir scientifique que forment les théories, les modèles, les concepts et les principes, lesquels sont essentiels à la compréhension de la nature ainsi que du monde construit.

Sciences de la vie

Les sciences de la vie se préoccupent de la croissance et des interactions des formes de vie dans leur environnement, de façon à refléter leur singularité, leur diversité, leur continuité génétique et leur nature évolutive. Les sciences de la vie comprennent des domaines d'étude tels que les écosystèmes, la biodiversité, les organismes vivants, la biologie cellulaire, la biochimie, les maladies, le génie génétique et la biotechnologie.

Sciences physiques

Les sciences physiques, qui englobent la chimie et la physique, se préoccupent de la matière, de l'énergie et des forces. La matière a une structure dont les composantes agissent les unes sur les autres. L'énergie relie la matière aux forces gravitationnelles, électromagnétiques et nucléaires de l'univers. Les sciences physiques se préoccupent des lois de la conservation de la masse et de l'énergie, de la quantité de mouvement et de la charge.

Sciences de la Terre et de l'espace

Les sciences de la Terre et de l'espace amènent l'élève à considérer son savoir selon des perspectives locales, mondiales et universelles. La Terre, mère nourricière, notre planète, a une forme, une structure et des régularités de changement, tout comme le système solaire qui nous entoure et l'univers physique s'étendant au-delà de celuici. Les sciences de la Terre et de l'espace recouvrent des domaines d'étude comme la géologie, l'hydrologie, la météorologie et l'astronomie.

Savoirs autochtones et locaux

Un bon programme de sciences doit reconnaitre que la science moderne n'est pas le seul système de connaissances empiriques sur la nature, et il doit aider l'élève à apprécier pleinement la valeur des savoirs traditionnels et, notamment, autochtones. Le dialogue entre les scientifiques et les détenteurs du savoir traditionnel ne date pas d'hier, et il se nourrit continuellement des interrelations entre les chercheurs et les praticiens dans leur quête de compréhension de notre monde complexe. Les termes « savoirs traditionnels », « savoirs autochtones » et « savoirs agroécologiques ruraux » sont largement répandus dans le monde pour désigner les systèmes de connaissances s'inscrivant dans des contextes locaux particuliers. Le présent programme d'études privilégie cependant le terme « savoir autochtone », qu'il distingue notamment du « savoir scientifique » de la façon indiquée ci-après.

• Savoir autochtone

Le savoir autochtone est un ensemble de connaissances, de savoir-faire, de pratiques et de philosophies développés par des sociétés ayant une longue histoire d'interaction avec leur environnement naturel. Ces ensembles de conventions, d'interprétations et de significations font partie intégrante d'un système culturel complexe qui prend appui sur la langue, les systèmes de nomenclature et de classification, les pratiques d'utilisation des ressources, les rituels, la spiritualité et la vision du monde (*Conseil international pour la science, 2002, p. 3*).

• Savoir scientifique

De même que le savoir autochtone, le savoir scientifique est un ensemble de connaissances, de savoir-faire, de pratiques et de philosophies développés par des individus (des scientifiques) ayant une longue histoire d'interaction avec leur environnement naturel. Ces ensembles de conventions, d'interprétations et de significations font partie intégrante de systèmes culturels complexes prenant appui sur la langue, les systèmes de nomenclature et de classification, les pratiques d'utilisation des ressources, les rituels et la vision du monde.

Les concepts fondamentaux, pour établir des liens entre les disciplines scientifiques

Une façon pratique de relier entre elles des disciplines scientifiques est de passer par les concepts fondamentaux qui sont à la base de chacune, et de les intégrer. Les concepts fondamentaux procurent un contexte dans lequel peuvent s'effectuer l'explication, l'organisation et la mise en relation des savoirs. L'élève approfondit ces concepts fondamentaux et applique la compréhension qu'il en tire avec un degré croissant de complexité à mesure qu'il progresse dans le programme d'études de la maternelle à la 12e année.

Constance et changement

Les concepts de constance et de changement sont à la base de la compréhension du monde naturel et du monde construit par l'homme. Par l'observation, l'élève apprend que certaines caractéristiques de la matière et des systèmes restent constantes au fil du temps, alors que d'autres changent. Ces changements varient en rythme, en intensité et en configuration, s'exprimant entre autres en tendances et en cycles, et peuvent être quantifiés par les mathématiques et, notamment, par la mesure.

Matière et énergie

Les objets du monde physique sont faits de matière. L'élève étudie la matière pour en comprendre les propriétés et la structure. Le concept d'énergie est un outil conceptuel aidant à comprendre des notions multiples portant sur les phénomènes naturels, les matières et le processus de changement. L'énergie, transmise ou transformée, est le moteur à la fois du mouvement et du changement.

Similarité et diversité

Les concepts de similarité et de diversité procurent à l'élève les outils lui permettant d'organiser ses expériences avec le monde naturel et le monde construit. En commençant par des expériences informelles, l'élève apprend à reconnaitre les attributs de la matière sous toutes ses formes, en vue de faire des distinctions utiles entre un type de matière et un autre, entre un type d'évènement et un autre. Avec le temps, l'élève arrive à suivre des méthodes et des protocoles universellement reconnus pour décrire et classifier les objets rencontrés, ce qui lui permet de communiquer ses idées à autrui et de réfléchir sur ses expériences.

Systèmes et interactions

Envisager le tout en fonction de ses parties et, inversement, les parties en fonction du tout est un moyen fondamental d'aider à la compréhension et à l'interprétation du monde. Un système est un groupe organisé d'objets ou de composants interreliés qui agissent les uns sur les autres de telle manière que l'effet global de ces interactions est plus grand que l'effet individuel des parties qui le composent, même quand elles sont considérées ensemble.

Durabilité et responsabilité

La durabilité renvoie à la capacité de répondre à ses besoins courants sans compromettre la capacité qu'auront les générations ultérieures de répondre aux leurs. La prise en charge renvoie à la responsabilité de chacun de prendre une part active à la gestion responsable des ressources naturelles. En développant sa compréhension du concept de durabilité, l'élève se responsabilise quant à la nécessité de faire des choix qui traduisent ce souci du milieu ambiant.

3e principe de base : Les habiletés et méthodes scientifiques et techniques

Ce principe de base vise les habiletés et méthodes que l'élève doit acquérir pour répondre à des questions, résoudre des problèmes et prendre des décisions. Bien que ces habiletés et méthodes n'appartiennent pas exclusivement aux sciences, elles jouent un rôle important dans l'évolution d'une compréhension des sciences et dans l'application des sciences et de la technologie à des situations nouvelles. Ce principe de base recouvre quatre grands domaines d'habiletés (ci-dessous) dont la portée et la complexité d'application augmentent avec le niveau scolaire.

Questionnement et planification

Il s'agit là des habiletés de s'interroger, de cerner les problèmes et d'élaborer des idées et des projets préliminaires.

Exécution et consignation des résultats

Ce sont les habiletés et méthodes permettant de mener à bien un plan d'action, qui passe par la collecte de données par le biais de l'observation et, dans la plupart des cas, la manipulation d'objets et de matériel. L'information ainsi recueillie peut être documentée et consignée sous diverses formes.

Analyse et interprétation

Habiletés et méthodes d'examen de l'information et des preuves recueillies, d'organisation et de présentation de cette information et de ces preuves en vue de leur interprétation, d'interprétation de l'information et d'évaluation des preuves recueillies, et de mise en pratique des conclusions de cette évaluation.

Communication et travail d'équipe

Comme dans d'autres disciplines, les habiletés de communication sont indispensables dans le domaine des sciences dès lors qu'une idée est élaborée, testée, interprétée, débattue et retenue ou rejetée en dernière analyse. Les habiletés de travail d'équipe importent aussi puisque l'élaboration et l'application d'idées passent par des processus de collaboration, tant dans les professions relevant du domaine scientifique que dans le domaine de l'apprentissage.

4e principe de base : Les attitudes

Ce principe de base vise à encourager l'élève à acquérir des attitudes, des valeurs et un sens éthique qui favoriseront un usage responsable de la science et de la technologie, dans son propre intérêt comme dans l'intérêt mutuel de la société et de l'environnement. Ce principe met en évidence six voies par lesquelles la formation scientifique contribue au développement d'une culture scientifique.

Appréciation des sciences

L'élève distingue le rôle et l'apport de la science et de la technologie dans sa vie personnelle comme dans la culture de sa communauté, tout en ayant conscience de leurs limites et de leurs incidences sur des évènements économiques, politiques, environnementaux, culturels et éthiques.

Intérêt pour les sciences

L'élève développe sa curiosité scientifique et garde un intérêt pour l'étude des sciences à la maison, à l'école et dans la communauté.

Esprit scientifique

L'élève développe un esprit critique l'incitant à faire reposer son savoir scientifique sur des éléments de preuve et des arguments raisonnés.

Collaboration

L'élève travaille en collaboration dans le cadre d'activités scientifiques, avec des camarades de classe et d'autres personnes, à l'école comme ailleurs.

Responsabilité

L'élève reconnait ses responsabilités vis-à-vis de la société et des milieux naturels dans son application pratique de la science et de la technologie.

Sécurité

L'élève manifeste, dans le cadre des activités liées à la science et à la technologie, un souci pour la sécurité et une volonté de ne faire de mal ni à soi ni à autrui, ni de mettre en danger animaux et plantes.

Contextes d'apprentissage

Les contextes d'apprentissage introduisent l'élève au programme de sciences en l'engageant dans une démarche d'expérimentation visant à l'amener au niveau de culture scientifique recherché. Chaque contexte d'apprentissage traduit une motivation philosophique distincte, qui en recoupe d'autres, sur laquelle vient notamment s'appuyer la volonté de faire des sciences un domaine d'étude obligatoire.

L'enquête scientifique vise à mettre l'accent sur la compréhension du monde naturel et du monde construit par l'homme, en faisant intervenir des méthodes empiriques systématiques pour former des théories visant à expliquer des faits observés et à faciliter leur prévisibilité.

La résolution de problèmes technologiques vise à mettre l'accent sur la conception, la construction, l'essai et la mise au point de prototypes visant à résoudre des problèmes pratiques suivant des procédés techniques.

La prise de décision STSE traduit le besoin d'engager les citoyens dans une réflexion sur les grands enjeux, considérés du point de vue scientifique, auxquels les humains et le monde en général sont confrontés, en vue d'éclairer et de faciliter la prise de décision par les individus, les collectivités ou la société tout entière.

Les perspectives culturelles jettent un éclairage humaniste sur la vision et la compréhension des systèmes de savoirs tels que d'autres cultures les ont développés et utilisés pour décrire et expliquer le monde naturel.

Ces contextes d'apprentissage ne s'excluent pas les uns les autres; en effet, un apprentissage bien conçu peut s'inscrire dans plus d'un contexte. L'élève doit vivre un apprentissage dans chaque contexte ainsi que pour que chaque niveau scolaire; cependant, il n'est pas nécessaire ni conseillé à l'élève de s'engager dans chaque contexte d'apprentissage de chaque unité. En classe, l'apprentissage peut être structuré de telle manière que les élèves puissent, soit à titre individuel, soit en groupe, parvenir aux mêmes résultats de programme tout en passant par des contextes d'apprentissage différents.

Un choix judicieux d'approches pédagogiques peut également profiter des idées courantes qui circulent sur les façons et les circonstances dans lesquelles les élèves réussissent le mieux un apprentissage :

- L'apprentissage survient lorsque les élèves sont traités comme un groupe de praticiens d'une science donnée.
- L'apprentissage est le fait, à la fois pour un groupe ou pour un individu, de construire et de développer idées et compétences.
- L'apprentissage fait intervenir, pour bien des élèves, le développement d'une nouvelle identité de soi.
- L'apprentissage se trouve entravé lorsque les élèves ressentent un choc culturel entre la culture pratiquée à la maison et la culture telle que pratiquée à l'école dans le cadre du programme scientifique.

Enquête scientifique [EN]

Le processus d'enquête est caractéristique de la démarche scientifique pour ce qui est d'expliquer et de comprendre la nature. Il passe par le recensement des hypothèses, l'exercice de la pensée critique et logique et la prise en compte d'autres explications possibles. L'enquête est une activité aux multiples facettes et comprend :

- l'observation visuelle ou l'écoute de sources informées ou compétentes;
- la formulation de questions ou la curiosité à l'égard de questions posées par d'autres;
- l'examen d'ouvrages de référence ou d'autres sources d'information pour établir l'état actuel des connaissances;
- l'examen de l'état actuel des connaissances compte tenu des preuves issues de l'expérimentation et des arguments rationnels;
- la planification de recherches, dont des études et expériences sur le terrain;
- l'acquisition de ressources (financières ou matérielles) pour mener à bien les recherches;
- les outils de collecte, d'analyse et d'interprétation de l'information;
- la proposition de bases de réponse, d'explication et de prédiction;
- la communication des conclusions à divers publics.

En participant à une diversité d'expériences d'enquête qui font varier le niveau d'autonomie de chacun, l'élève peut progressivement acquérir les compétences nécessaires pour mener ses propres enquêtes - ce qui est l'un des piliers de la culture scientifique.

Résolution de problèmes technologiques [RPT]

Essentiellement, le contexte de la résolution de problèmes technologiques vise à amener l'élève à trouver des solutions à des problèmes d'ordre pratique. Il s'agit de répondre à des besoins humains et sociaux grâce à un processus itératif de conception et d'exécution dont les principales étapes sont :

- la définition du problème à résoudre;
- la mise en évidence des contraintes et sources de soutien;
- la définition des pistes de solution possibles et le choix d'une piste de travail;
- la planification et la construction d'un prototype ou d'un plan d'action pour résoudre le problème;
- l'essai du prototype ou l'exécution du plan, et leur évaluation.

En participant à une diversité d'activités de résolution de problèmes techniques et environnementaux, l'élève développe du coup sa capacité d'analyse et de résolution de problèmes véritables du monde naturel et du monde construit par l'homme.

Prise de décision STSE [PD]

Le savoir scientifique peut se ramener à la compréhension des rapports entre la science, la technologie, la société et l'environnement. L'élève doit aussi, au moment d'aborder une question ou un problème de fond, considérer les valeurs fondamentales ou morales en cause. La prise de décision STSE compte notamment les étapes suivantes :

- la définition du problème;
- le recensement des recherches existantes et des différents points de vue sur la question;
- la formulation de plusieurs pistes d'action ou de solution;\
- l'évaluation des avantages et inconvénients de chaque piste;
- la détermination d'une valeur fondamentale associée à chaque action ou solution;
- la prise d'une décision éclairée;
- la prise en compte des répercussions de la décision;
- la réflexion sur tout le processus qui a mené à la décision.

L'élève peut s'engager dans la résolution de problèmes STSE dans le cadre de projets de recherche, d'expériences de sa propre invention, d'études de cas, de jeux de rôles, de débats, de dialogues délibératifs et de projets d'action.

Perspectives culturelles [PC]

L'élève doit reconnaître et respecter le fait que toutes les cultures ont développé des systèmes de savoir pour décrire et expliquer la nature. Deux des systèmes de savoir abordés dans le cadre du présent programme d'études sont les cultures des Premières Nations et des Métis (le « savoir autochtone ») et les cultures eurocanadiennes (le « savoir scientifique »). Chacun à sa façon, ces deux systèmes de savoir véhiculent une compréhension du monde naturel et du monde construit, et ils créent ou empruntent aux technologies d'autres cultures pour résoudre des problèmes pratiques. Les deux systèmes sont systématiques, rationnels, empiriques, dynamiquement transformables et culturellement spécifiques.

Les dimensions culturelles des sciences sont en partie véhiculées par les trois autres contextes d'apprentissage, ainsi qu'au moment d'aborder la nature de la science. Les perspectives culturelles des sciences peuvent également être enseignées dans le cadre d'activités qui explorent explicitement le savoir autochtone et les autres savoirs traditionnels.

La prise en compte des perspectives culturelles en sciences passe par :

- la reconnaissance et le respect des systèmes de savoir que d'autres cultures ont élaborés pour expliquer le monde naturel et les technologies qu'elles ont créées pour résoudre des problèmes auxquels était confronté l'être humain;
- la reconnaissance que les sciences, à titre de systèmes de savoir, sont issues des cultures euro-canadiennes;
- la valorisation des savoirs traditionnels et locaux comme solutions à des problèmes pratiques;
- le respect des protocoles d'obtention d'information auprès des détenteurs du savoir et le devoir de se renseigner sur ces protocoles, et de les respecter.

En s'engageant dans l'exploration de perspectives culturelles, l'élève dont la culture scientifique est développée sait de mieux en mieux apprécier les multiples visions du monde ainsi que les systèmes de croyances se trouvant à la base des sciences et des savoirs autochtones.

La langue

La langue est l'outil principal de l'enseignement en situation linguistique francophone et immersive, d'où l'importance de la maitrise de celle-ci et cela dans toutes les matières, y compris en sciences. La langue des sciences en français est un nouveau langage pour beaucoup d'élèves, car elle est étrangère à la plupart des activités quotidiennes. De plus, les élèves sont à divers stades de l'apprentissage du français. Cormier (2004) parle d'une pédagogie qui tient compte de l'insécurité linguistique. Les activités langagières de discussion orale, d'écriture et de lecture font partie de la définition du savoir-faire en science.

La langue scientifique

La science est une façon d'appréhender le monde naturel à partir de méthodes et de principes uniformes et systématiques bien compris et largement décrits dans la communauté scientifique. Les principes et théories scientifiques ont été établis à la suite d'expérimentations et d'observations répétées et ils ont été soumis à l'arbitrage de pairs avant d'être officiellement reconnus par la communauté scientifique.

L'acceptation d'une théorie n'implique pas qu'elle soit indiscutable ou qu'on doive à jamais l'ériger en dogme. À l'inverse, à mesure que le milieu scientifique dispose de nouveaux éléments d'information, les explications scientifiques déjà établies sont revues et améliorées, ou rejetées et supplantées par d'autres. L'évolution d'une « hypothèse » en « théorie » suppose l'application vérifiable de lois scientifiques. L'élaboration d'une théorie passe souvent par l'expérimentation de nombreuses hypothèses. Seuls quelques phénomènes naturels sont considérés par la science comme étant des lois naturelles, par exemple, la loi de la conservation de la masse.

Les scientifiques emploient les termes loi, théorie et hypothèse pour décrire les différents types d'explications scientifiques de phénomènes du monde naturel et du monde construit. Dans le jargon scientifique, ces termes ont un sens différent du sens qu'ils ont dans la langue courante.

Loi - Une loi est une description généralisée, habituellement exprimée en termes mathématiques, décrivant un aspect donné du monde naturel dans certaines conditions.

Théorie - Une théorie est une explication d'un ensemble d'observations ou de faits reliés entre eux, formulée sous forme d'énoncé, d'équation ou de modèle ou d'une quelconque combinaison de ces éléments. La théorie aide également à prédire les résultats d'observations futures. Une théorie ne devient telle qu'après avoir été de multiples fois vérifiée par des groupes de chercheurs distincts. Les méthodes et protocoles de vérification d'une théorie sont bien définis dans chaque domaine de la science et ils peuvent varier d'un domaine à l'autre. Une théorie est considérée comme exacte non pas par la quantité de preuves sur lesquelles elle s'appuie, mais tant que de nouveaux éléments d'information ne viennent pas l'infirmer ou la réfuter parce qu'elle est incapable de les expliquer adéquatement. À ce stade, la théorie est soit rejetée, soit modifiée de manière à expliquer les nouveaux éléments de preuve. Une théorie ne devient jamais une loi, car les théories servent à expliquer les lois.

Hypothèse - Une hypothèse est une proposition avancée provisoirement comme explication de faits et de phénomènes naturels, qui est appelée à être vérifiée immédiatement ou ultérieurement par l'expérience. Les hypothèses doivent être formulées de telle manière qu'elles peuvent être invalidées. Les hypothèses ne peuvent jamais être prouvées exactes; elles ne font que s'appuyer sur des données empiriques.

Un modèle scientifique est construit pour représenter et expliquer certains aspects des phénomènes physiques. Sans jamais être une réplique exacte du phénomène réel, le modèle en est la version simplifiée, généralement construite pour faciliter l'étude de systèmes complexes comme l'atome, les changements climatiques et les cycles biogéochimiques.

Le modèle peut être une représentation physique, mentale ou mathématique, ou une quelconque combinaison de ces éléments. Le modèle est une construction complexe formée d'objets conceptuels et de processus auxquels ces objets participent ou au sein desquels ils interagissent. Les scientifiques consacrent du temps et des efforts considérables à la construction et à l'essai de ces modèles pour mieux comprendre le monde naturel.

Dans le cadre d'un processus scientifique, l'élève est constamment en train de construire et de mettre à l'essai ses propres modèles de compréhension du monde naturel, et peut avoir besoin qu'on l'aide à en déterminer les éléments et à les articuler entre eux. Les activités de réflexion et de métacognition sont particulièrement utiles à cet égard. L'élève doit être en mesure de reconnaître les caractéristiques du phénomène physique que son modèle tente d'expliquer ou de représenter. Inversement et tout aussi important, l'élève doit chercher à identifier les caractéristiques qui n'y sont pas représentées ou expliquées. L'élève doit tenter de déterminer l'utilité de son modèle en déterminant s'il aide à en comprendre les concepts ou processus sous-jacents. Enfin, l'élève peut se rendre compte qu'il peut être nécessaire de construire plusieurs modèles différents d'un même phénomène pour mettre à l'essai ou comprendre différents aspects du phénomène.

Les expériences de laboratoire - en classe et sur le terrain

Le Conseil national de recherches du Canada (2006, p. 3) définit l'expérience de laboratoire en milieu scolaire comme étant un essai réalisé en laboratoire, en salle de classe ou sur le terrain et visant à procurer à l'élève l'occasion d'interagir directement avec le phénomène naturel ou avec l'information recueillie par d'autres à l'aide d'outils, de matériels, de techniques de collecte et de modèles. L'expérience en laboratoire doit être conçue de manière que tous les élèves - y compris ceux et celles qui ont besoin de soutiens intensifs - soient à même d'y participer d'une manière authentique, et d'en bénéficier.

Les expériences en classe et sur le terrain aident l'élève à développer ses habiletés scientifiques et technologiques, notamment sur les plans :

- de l'amorce et de la planification;
- de l'exécution et de la consignation des résultats;
- de l'analyse et de l'interprétation;
- de la communication et du travail d'équipe.

Une expérience bien planifiée aide l'élève à comprendre la nature de la science et, notamment, la nécessité que les explications et prédictions avancées concordent bien avec les observations faites. De même, les expériences centrées sur l'élève doivent faire valoir la nécessité de montrer, dans toute entreprise scientifique, de la curiosité et un besoin de savoir. Un bon programme de sciences comporte tout un éventail d'expériences tant individuelles qu'à réaliser en petits et grand groupes d'élèves, en classe comme sur le terrain. Il importe que ces expériences débordent du cadre de la simple « recette de cuisine » où chaque élément de la recette doit être exécuté pour être corroboré. De même, les simulations informatiques et démonstrations par l'enseignant doivent venir compléter les activités pratiques des élèves, mais elles ne doivent pas s'y substituer.

La mesure et l'évaluation des résultats de l'élève doivent rendre compte de la nature de l'expérience, en mettant plus particulièrement l'accent sur les habiletés scientifiques et techniques. L'élève doit consigner ses observations et méthodes dans un journal de bord ou un rapport d'expérience de type narratif. Le rapport narratif permet à l'élève de décrire la démarche qu'il a suivie et les conclusions auxquelles sa démarche a permis de parvenir, en répondant à quatre questions :

- Qu'est-ce que je cherchais à savoir?
- Comment m'y suis-je pris pour le découvrir?
- Qu'est-ce que j'ai trouvé?
- Que signifient ces conclusions?

Les réponses de l'élève à ces questions peuvent prendre la forme d'illustrations et de comptes rendus oraux ou écrits.

La sécurité en classe de sciences

La sécurité en classe de sciences est de la plus haute importance. Les autres composantes de l'éducation (les ressources, les stratégies pédagogiques, les installations) ne peuvent remplir véritablement leur rôle que si elles se réalisent dans une salle de classe qui ne présente pas de danger. Pour créer des conditions de sécurité dans la salle de classe, il faut que l'enseignant de sciences soit informé, conscient et prévenant, et que les élèves respectent et appliquent les consignes.

Des pratiques sécuritaires, en classe comme ailleurs, sont la responsabilité conjointe de l'enseignant de sciences et des élèves. La responsabilité de l'enseignant se résume à fournir un environnement sûr et à s'assurer que les élèves connaissent bien les façons d'agir qui ne présentent pas de danger. La responsabilité des élèves est d'agir avec prudence en fonction des conseils donnés et des mises en garde propres à chaque ressource consultée.

Kwan et Texley (2003) proposent aux enseignantes et enseignants les Quatre P de la sécurité, à savoir la Préparation, la Planification, la Prévention et la Protection :

Préparation

- Se tenir au courant des plus récentes nouvelles et certifications en matière de sécurité personnelle.
- Bien connaître les politiques nationales ou provinciales et les consignes des divisions scolaires et des écoles en matière de sécurité en classe.
- Passer un contrat de sécurité avec les élèves.

Planification

- Élaborer des plans de cours permettant à l'ensemble des élèves d'apprendre efficacement et en toute sécurité.
- Choisir des activités adaptées aux styles d'apprentissage, au niveau de maturité et au comportement de l'ensemble des élèves, et inclusives de tous les élèves.
- Créer des « aide-mémoires sécurité » pour les activités en classe ou les expériences réalisées sur le terrain.

Prévention

- Recenser et atténuer les risques présents.
- Passer en revue avec les élèves les consignes de prévention des accidents.
- Apprendre aux élèves les consignes de sécurité, notamment sur le port de vêtements adaptés, et les revoir avec
- Ne pas utiliser de matériel défectueux ni suivre de consignes potentiellement dangereuses.
- Interdire aux élèves de manger ou de boire dans les laboratoires et locaux de sciences.

Protection

- S'assurer qu'on dispose d'un matériel de protection suffisant pour tous les élèves, comme des lunettes de protection.
- Apprendre aux élèves comment utiliser correctement le matériel de sécurité et les vêtements de protection et leur en faire la démonstration.
- Montrer l'exemple en exigeant que tous les élèves et visiteurs portent des vêtements de protection appropriés aux lieux.

La définition de la sécurité s'étend au bienêtre de tous les éléments de la biosphère, comme les animaux, les plantes, la terre, l'air et l'eau. Depuis la connaissance des fleurs sauvages qu'on peut cueillir sans crainte jusqu'à l'élimination des déchets toxiques des laboratoires chimiques, la sécurité de notre monde et de notre avenir dépend notamment de nos gestes individuels et de la formation donnée pendant les cours de sciences. L'élève doit aussi montrer un comportement éthique et responsable dans sa façon de traiter les animaux dans le cadre d'expérimentations.

La sécurité en classe de sciences est en outre affaire d'entreposage, d'utilisation et d'élimination des déchets de produits chimiques. Le règlement sur le Système d'information sur les matières dangereuses utilisées au travail (SIMDUT) prescrit au titre de la *Loi sur les produits dangereux* régit les pratiques d'entreposage et de manipulation de produits chimiques dans les écoles. Toutes les divisions scolaires sont tenues de se conformer aux dispositions de la loi. Les produits chimiques doivent notamment être gardés en lieu sûr selon la catégorie de produits dont ils relèvent et pas seulement rangés par ordre alphabétique. Tous les contenants de produits chimiques doivent porter les étiquettes de mise en garde appropriées et tout le personnel de la division scolaire appelé à se servir de substances dangereuses doit avoir accès aux fiches signalétiques du SIMDUT. Le règlement provincial au titre du SIMDUT prescrit que tout employé appelé à manipuler des substances dangereuses doit recevoir une formation adéquate de son employeur.

La technologie au service de l'enseignement des sciences

Les ressources technologiques sont essentielles à l'enseignement des sciences en classe. Les moyens techniques visent à étendre nos capacités et, dès lors, ils font partie intégrante du matériel didactique. Il est important de faire un travail de réflexion et de discussions individuelles, en petits groupes ou en plénière pour aider l'élève à faire le lien entre les moyens techniques d'une part et le développement du concept, les résultats pédagogiques et les activités à réaliser, d'autre part. Le choix de recourir à des moyens techniques et le choix des moyens techniques appropriés aux circonstances doit reposer sur de saines pratiques pédagogiques, tout particulièrement en ce qui concerne les pratiques d'expérimentation par l'élève. Ces moyens techniques font notamment appel à l'informatique, comme ceux décrits ci-après, ainsi qu'à d'autres technologies.

Voici des exemples d'utilisation de moyens informatiques en soutien à l'enseignement et à l'apprentissage des sciences :

Collecte et analyse de données

- Les enregistreurs de données, comme les sondes de température et les détecteurs de mouvement, aident les élèves à recueillir et analyser des données, souvent en temps réel, et à consigner des observations sur de très courts ou de très longs laps de temps, permettant ainsi la réalisation d'expériences qu'il aurait été autrement impossible de faire.
- Les logiciels graphiques peuvent faciliter l'analyse et l'illustration des données recueillies par les élèves ou des informations recueillies auprès d'autres sources.

Visualisation et représentation

- Les élèves peuvent, dans le cadre de leur processus de collecte et d'analyse de données, recueillir leurs propres images numérisées et enregistrements vidéos ou aller chercher des images numérisées et vidéos disponibles en ligne pour rehausser leur compréhension de concepts scientifiques.
- Les logiciels de simulation et de modélisation donnent la possibilité d'explorer des concepts et modèles qui ne sont pas toujours accessibles en classe, comme ceux qui font appel à du matériel ou de l'équipement couteux ou non disponible, à des matières dangereuses ou à des procédures qui utilisent ces matières à des niveaux d'habileté qui sont au-delà des compétences des élèves, ou qui nécessitent plus de temps que ce dont on dispose ou qu'il est normalement possible d'accorder en classe.

Communication et collaboration

• Les élèves peuvent faire appel à du traitement de texte et des outils de présentation informatisée pour illustrer et communiquer les résultats de leurs expériences à d'autres.

L'Internet est un moyen de créer des réseaux et de maintenir des liens avec des scientifiques, des enseignants et d'autres élèves pour la collecte de l'information, la présentation des données et des conclusions, et la comparaison de résultats avec des élèves d'autres localités.

Comment utiliser ce programme d'études

Les **résultats d'apprentissage** décrivent ce que l'élève est censé savoir et pouvoir faire à la fin de l'année ou du cours du secondaire dans un domaine d'étude donné. À ce titre, tous les résultats d'apprentissage doivent être atteints. Les résultats d'apprentissage orientent les activités de mesure et d'évaluation, de même que la planification du programme, des unités et des leçons.

Les résultats d'apprentissage décrivent les connaissances, habiletés et notions que les élèves doivent posséder à la fin de chaque niveau scolaire.

Entre autres caractéristiques, les résultats d'apprentissage :

- sont centrés sur ce que l'élève apprend plutôt que sur ce que l'enseignant ou l'enseignante enseigne;
- précisent les habiletés et les capacités, les connaissances et la compréhension, ainsi que les attitudes que l'élève est censé avoir acquises;
- sont observables, mesurables et réalisables;
- sont rédigés avec des verbes d'action et dans une langue professionnelle claire (le vocabulaire du domaine de l'éducation et de la matière en question);
- sont élaborés afin d'être atteints en contexte de manière à ce que l'apprentissage soit significatif et qu'il y ait un lien entre les matières;
- sont formulés en fonction de l'année et de la matière;
- sont soutenus par des indicateurs de réalisation qui reflètent la portée et la profondeur des attentes;
- tiennent compte de l'évolution de l'apprentissage et ont un lien avec la matière présentée dans les autres années lorsque cela est pertinent.

Les **indicateurs de réalisation** représentent de ce que l'élève doit savoir ou pouvoir faire pour atteindre un résultat d'apprentissage donné. Au moment de planifier leur cours, les enseignants doivent bien connaître l'ensemble des indicateurs de réalisation en cause, de manière à comprendre le résultat d'apprentissage dans toute sa portée et dans toute sa profondeur. Forts de cette compréhension, les enseignants peuvent élaborer leurs propres indicateurs adaptés aux intérêts, aux expériences et aux apprentissages passés de leurs élèves. Ces indicateurs de leur cru ne doivent cependant pas déroger du but visé par le résultat d'apprentissage.

Les indicateurs de réalisation représentent une liste de ce que les élèves doivent savoir et être capables de faire s'ils ont atteint le résultat d'apprentissage.

Bien que les résultats d'apprentissage et les indicateurs de réalisation du programme d'études de sciences soient organisés en unités d'étude, les enseignants peuvent organiser leur enseignement par thèmes interdisciplinaires. Ils ne sont pas tenus de structurer l'apprentissage en unités de sciences distinctes.

Résultats d'apprentissage et indicateurs de réalisation

Légende

Code des résultats d'apprentissage et indicateurs de réalisation		Abréviation des domaines d'étude	
20SP-EC.1(a)			
20	Niveau scolaire	[EN]	Enquête scientifique
SP	Initial du cours	[PC]	Perspectives culturelles
EC	Domaine d'étude	[PD]	Prise de décision STSE
1	Résultat d'apprentissage	[RPT]	Résolution de problèmes technologiques
(a)	Indicateur de réalisation		

Termes utilisés dans les résultats d'apprentissage et les indicateurs de réalisation à des fins particulières

y compris	délimite le contenu, la stratégie ou le contexte qui devra être évalué même si d'autres apprentissages peuvent être abordés
tel que; telle que tels que; telles que	présente des suggestions de contenu sans exclure d'autres possibilités
p. ex.	présente des exemples précis touchant un concept ou une stratégie

Buts

Comprendre la nature de la science et des relations STSE	L'élève développera sa compréhension de la nature de la science et de la technologie, des relations entre la science et la technologie ainsi que du contexte social et environnemental dans lequel s'inscrivent la science et la technologie, y compris des rapports entre le monde naturel et le monde construit.
Construire les connaissances scientifiques	L'élève construira sa connaissance et sa compréhension des concepts, principes, lois et théories des sciences de la vie, sciences physiques et sciences de la Terre et de l'espace, et appliquera ces acquis pour interpréter, intégrer et élargir ses connaissances théoriques et pratiques.
Développer des habiletés et des attitudes scientifiques et technologiques	L'élève développera les habiletés nécessaires pour mener des investigations scientifiques et technologiques, résoudre des problèmes et communiquer pour travailler en collaboration et pour prendre des décisions éclairées.
Développer des attitudes qui appuient les habitudes mentales scientifiques	L'élève développera des attitudes qui l'aideront à acquérir et à appliquer de façon responsable des connaissances scientifiques et technologiques, de même que le savoir autochtone, pour son plus grand bien et pour celui de la société et de l'environnement.

Abréviation des processus	Principes de base de la culture scientifique
[EN] Enquête scientifique	(A) Attitudes
[PC] Perspectives culturelles	(H) Habiletés
[PD] Prise de décision STSE	(S) Savoir
[RPT] Résolution de problèmes technologiques	(STSE) Sciences-technologie-société-environnement

Résultats d'apprentissage et indicateurs de réalisation (suite)

Exploration de carrières (EC)

L'élève devra :

20SP-EC.1 Explorer les choix de carrières qui font appel aux sciences physiques en Saskatchewan, au Canada et dans le monde.

L'élève :

- a. Décrit des choix de carrières pertinentes ou peu souvent envisagées au niveau local, régional ou national, dans le domaine des sciences physiques.
 (H, C)
- b. Établit le lien entre les sujets en *Sciences physiques 20* et les professions qui l'intéressent. (H, A, STSE)
- c. Identifie les emplois liés aux sciences physiques confrontés à des pénuries ou à de grandes offres au niveau local, régional ou national. (A, H, C, STSE)
- d. Présente une carrière reliée aux sciences physiques de son choix selon des critères tels que :
 - l'existence d'un le programme de formation;
 - la carrière pour laquelle les diplômés de ce programme sont formés;
 - la possibilité de suivre le programme en français;
 - le type d'établissement qui emploie les diplômés de ce programme;
 - · les heures ou les quarts de travail;
 - le salaire offert actuellement en Saskatchewan;
 - le stress mental et physique qui y est associé;
 - les risques en milieu de travail et la sécurité au travail;
 - les autres professionnels avec lesquels ils sont appelés à interagir;
 - les exigences relatives au perfectionnement professionnel pour les diplômés en exercice;
 - les perspectives professionnelles pour un tel programme en milieu francophone minoritaire;
 - les exigences professionnelles ou licences requises au Canada et en Saskatchewan. (H, C)
- e. Participe à des expériences professionnelles associées aux sciences physiques. (H, A)
- f. Analyse les choix de carrières à partir des informations recueillies lors de sa participation à des foires de carrières. (A, H)
- g. Discute avec d'autres personnes, tels que des ainés et des gardiens des connaissances, des experts dans diverses disciplines, des carrières pertinentes en sciences physiques. (A, H, C)
- h. Communique les conclusions de sa recherche dans une exposition, une vidéo, un logiciel de présentation, un site Web ou à l'oral. (H)
- i. Présente un modèle avec les points de vue de différents intervenants sur les différents choix de carrière en sciences physiques en français. (A, H)
- j. Partage ses expériences professionnelles et découvertes, suite à des rencontres et des entrevues avec ses pairs. (A, H)

Études autonomes (EA)

L'élève devra :

20SP-ÉA.1 Créer et réaliser un plan pour l'exploration d'un ou plusieurs sujets pertinents aux Sciences physiques 20.

L'élève :

- a. Rédige une proposition de projet d'enquête scientifique liée à un sujet étudié dans le cadre du cours *Sciences physiques 20*. (H, STSE)
- b. Réalise une expérience conçue l'élève conformément aux procédures scientifiques établis. (H, STSE)
- c. Assembler un portfolio et réfléchir aux éléments significatifs quant à la démarche et progression de ses apprentissages par rapport aux *Sciences physiques 20*. (H, A)
- d. Conçoit, construit et évalue l'efficacité d'un dispositif, d'un modèle ou d'une technologie qui démontre les principes scientifiques qui soustendent un concept de sciences physiques lié à un thème Sciences physiques 20. (STSE, H)
- e. Débat d'une question d'actualité liée aux sciences physiques. (H, A)
- f. Présente les résultats de sa recherche autodirigée sous une des formes suivantes :
 - · une exposition;
 - une présentation;
 - un spectacle;
 - une démonstration;
 - une chanson;
 - un jeu;
 - une annonce publicitaire;
 - une présentation artistique ou;
 - un rapport de recherche. (H)
- g. Élabore du matériel à l'appui des arguments en faveur ou contre d'une position prise sur une question ayant trait aux *Sciences physiques 20*. (H, C, A)
- h. Construit un outil d'évaluation (p.ex. une rubrique, grille d'observation, liste de vérification, une autoévaluation, une évaluation par les pairs) pour évaluer le processus et les produits impliqués dans l'étude autodirigée. (H, A)

La chaleur (CH)

L'élève devra :

20SP-CH.1 Analyser qualitativement et quantitativement, les effets de la chaleur sur la matière lors des échanges de température et les changements d'états de la matière à l'aide de la théorie cinétique.

- a. Distingue entre la chaleur et la température à l'aide de la théorie cinétique. (C)
- b. Examine les perspectives des Premières Nations et des Métis par rapport au feu et à la chaleur, y compris leur compréhension du transfert de chaleur pour la résolution de problèmes de la vie quotidienne (cuisson et refuge). (STSE, C)
- c. Discuter de la façon dont les concepts d'un système fermé et la loi de conservation de l'énergie sont à la base l'étude du transfert de chaleur et de la chaleur. (H, C)
- d. Mesure la capacité calorifique spécifique de métaux à l'aide d'un calorimètre. (H, C)
- e. Détermine la chaleur latente de fusion ou de vaporisation de diverses substances à l'aide d'un calorimètre. (H, C)
- f. Mesure les propriétés physiques de l'eau, y compris la densité à divers températures, capacité thermique et chaleur latente. (H, C)
- g. Compare, en termes quantitatifs, les capacités thermiques de certains matériaux courants, y compris l'eau. (H, STSE, A)
- h. Explique l'influence de la capacité thermique sur le choix de matériel utilisé dans le développement de technologies liées à l'habillement, la nourriture et l'abri. (H, C, STSE)
- i. Trace une courbe de chauffage ou de refroidissement de l'eau, ou d'autres substances, à partir de données qu'il aura recueilli, à l'aide de techniques ou de logiciel de création de graphiques. (H, C)
- j. Utilise des technologies appropriées telles que les sondes de température et de calorimètres de façon sécuritaire lors de la collecte des données. (H, A)
- k. Calcule la quantité de chaleur ($Q = mc \cite{c}T$), la capacité thermique spécifique et la chaleur latente ($Q = mH_f$ et $Q = mH_v$) produite au cours des changements d'état en utilisant le nombre de chiffres significatifs. (H, C)
- I. Vérifie expérimentalement ses calculs sur l'échange de chaleur et la température finale impliquée dans le mélange de deux quantités connues de substances connues et indique les sources d'erreurs expérimentales et les améliorations à la conception expérimental. (H, C, STSE, A)
- m. Examine les utilisations traditionnelles et contemporaines du transfert de chaleur, p. ex. chauffage, utilisation de la chaleur pour faire des outils de cuivre, conservation de l'énergie dans le bâtiment, les pompes à chaleur, isolation et évacuation de l'humidité des vêtements, défroissage à la vapeur et le microclimat. (STSE, H, C)

- n. Explore qualitativement ou quantitativement la dilatation et la contraction de la matière au cours du transfert de chaleur ou d'une variation de température. (H, C)
- o. Enquête sur les effets de la dilatation et de la contraction thermique de la matière dans les applications de la technologie comme la route, le pont et la construction, la plomberie, la construction de la ligne électrique et le génie industriel. (STSE, A)
- p. Discute des répercussions du comportement anormal de l'eau, (p. ex. la densité, la capacité de chaleur spécifique, et les chaleurs de vaporisation et de fusion) à l'égard de l'environnement et du climat de la Terre. (STSE, C)

20SP-CH.2 Déterminer, les quantités de chaleur impliquées lors des réactions chimiques à partir de calculs et d'expériences au laboratoire.

- a. Discerne les réactions endothermiques des réactions exothermiques, y compris celles produites dans les solutions. (C)
- Fait des recherches sur le développement historique de la thermodynamique, y compris les découvertes, les inventions importantes et les rôles des contributeurs tels que Carnot, Maxwell, Boltzmann, Lord Kelvin et Gibbs. (STSE)
- c. Mesure les variations de température au cours des réactions chimiques exothermiques et endothermiques à l'aide d'un thermomètre ou d'une sonde de température. (H, C)
- d. Calcule la chaleur théorique absorbée et dégagée dans des réactions exothermiques et endothermiques ou les deux, y compris les réactions de combustion, à partir de diverses quantités de réactifs étant donné la chaleur de réaction. (H, C)
- e. Distingue les concepts de chaleur expérimentale de réaction et de chaleur théorique de réaction, y compris :
 - les sources d'erreur;
 - les calculs d'erreur de pourcentage. (H, C)
- f. Discute de l'importance de l'analyse des quantités de chaleur dans les réactions chimiques. (STSE)
- g. Calcule la chaleur molaire de réaction de la dissolution de composés ioniques dans une solution. (H, C)
- h. Compare la quantité de chaleur associée à l'utilisation de diverses compresses chaudes ou froides (cryosacs) disponibles dans le commerce.
- i. Crée, et évalue l'efficacité d'une compresse froide ou chaude avec
 l'objectif d'avoir une réaction complète sans un excès de réactifs. (STSE, H, C)
- j. Compare le carburant consommé et l'énergie thermique produite de diverses réactions de combustion impliquant des combustibles ordinaires, p. ex. méthane, propane, octane et éthanol. (STSE, H)

Les fondements de la chimie (FC)

L'élève devra :

20SP-FC.1 Prédire les produits des cinq types de réactions chimique de base et évaluer l'impact de ces réactions sur la société et l'environnement.

- a. Analyse, suite à l'observation, des réactions de :
 - synthèse;
 - · décomposition;
 - · combustion;
 - déplacement simple;
 - déplacement double (y compris la neutralisation acide base). (H, C)
- b. Représente les réactions de synthèse, de décomposition, de combustion, de déplacement simple et de déplacement double (y compris la neutralisation des acides-bases) à l'aide de modèles atomiques, d'objets de manipulation, d'équations squelettes, d'équations équilibrées et de la nomenclature de UICPA. (H)
- c. Explique l'importance des équations squelettes, équations équilibrées et de la nomenclature l'UICPA pour la compréhension des réactions chimiques. (H, C, A)
- d. Prédit les produits des réactions de synthèse et de décomposition à partir de ses connaissances sur les réactifs. (H, C)
- e. Détermine la faisabilité des réactions de déplacement simple basées sur l'activité de métaux ou de non-métaux. (H, C)
- f. Prédit les produits de réactions déplacement double, y compris les réactions de neutralisation acide-base et la formation d'un précipité à l'aide des règles de solubilité. (H, C)
- g. Distingue entre les produits des réactions de combustion complète et incomplète et les conséquences potentielles sur les êtres vivants et l'environnement. (STSE, C)
- h. Démontre la différence entre une combustion complète et une combustion incomplète, en procédant à une enquête si possible. (H)
- i. Compare le combustible consommé et le carbone produit par diverses réactions de combustion, p. ex. méthane, propane et éthanol. (H)
- j. Décrit les effets de réactions chimiques spécifiques :
 - · bénéfiques pour les organismes vivants;
 - · nuisibles aux organismes vivants;
 - affectant l'environnement. (H, STSE)
- k. Recherche des exemples d'utilisation des cinq types de réactions chimiques pertinentes à l'industrie ou à l'agriculture en Saskatchewan. (STSE, H, A, C)

L'élève :

20SP-FC.2 Examiner la mole comme l'unité de mesure de la matière.

- a. Donne des exemples des diverses façons de mesurer une quantité de substance qui ne sont pas dénombrables. (H)
- b. Établit des liens entre compter et :
 - la pesée à la vente de produits tels que des grains ou du gravier;
 - l'achat des produits en gros;
 - la mise en rouleaux des pièces de monnaie;
 - l'achat du propane pour un barbecue. (C)
- c. Démontre, à l'aide d'exemples, la grandeur du nombre d'Avogadro (6.02×10^{23}) par rapport aux objets courants comme des gouttes d'eau, des billes et des grains de sable. (C)
- d. Explique les raisons de l'utilisation de la mole pour représenter une quantité de matière. (C, STSE)
- e. Donne un aperçu des contributions d'individus comme Avogadro,
 Berzelius, Davy, Gay-Lussac, Proust et Dalton à la compréhension moderne des composés. (C)
- f. Calcule la masse molaire de divers composés ioniques et moléculaires. (H)
- g. Effectue des conversions molaires, y compris :
 - la masse en mole;
 - le nombre de particules en mole;
 - le volume en mole;
 - la concentration d'une solution en mole,
 - et leurs opérations inverses, en utilisant le bon nombre de chiffres significatifs. (H)
- h. Prépare des solutions de concentration connue à l'aide de la molarité et des calculs de dilution. (H, C)
- i. Explore le recours aux solutions dans les secteurs minier, industriel et agricole. (STSE, H, C)

20SP-FC.3 Déterminer les quantités relatives des substances consommées et produites dans les réactions chimiques grâce à la st¿chiométrie.

- a. Se questionne sur la quantité de matériaux nécessaire à la production d'un produit fini. (H)
- b. Définit le nombre relatif de moles dans diverses réactions chimiques à l'aide d'équations chimiques équilibrées. (C, H)
- c. Établit des liens entre l'utilisation de la mole aux coefficients dans une équation chimique équilibrée, et compare ceci à la masse et au volume comme quantités mesurables. (C, A, STSE)
- d. Effectue des calculs stèchiométriques pour prédire le résultat réaction chimique (p. ex. concentration, masse, volume, nombre de particules et énergie transféré) en utilisant les unités et les chiffres significatifs correspondants. (H)
- e. Réalise des expériences conçues par l'élève pour confirmer l'hypothèse st¿chiométrique en se servant correctement et avec précision d'instruments de collecte de données. (H)
- f. Communique les résultats des expériences à l'aide des rapports de laboratoire selon les normes exigées. (H)
- g. Spécifie le réactif limitant et le réactif en excès dans diverses réactions chimiques à partir de calculs st¿chiométriques et d'expériences. (H, C)
- h. Différencie le rendement expérimental du rendement théorique à partir des sources d'erreur et du calcul de pourcentage d'erreur. (STSE, H)
- i. Explique la différence entre le rendement théorique et le rendement réel, et les sources d'erreur. (STSE, H)
- j. Prédit comment optimiser le rendement d'un processus chimique donne. (STSE, H) Discute de l'impact économique du rendement des réactions chimiques en lien avec la maximisation du produit et du profit, afin de minimiser la production de déchets. (STSE, A)
- k. Discute de l'impact économique du rendement des réactions chimiques en lien avec la maximisation du produit et du profit, afin de minimiser la production de déchets. (STSE, A)
- I. Recherche les effets sur la santé humaine ou la santé de l'environnement local des réactifs et des produits des réactions chimiques dans l'industrie, l'exploitation minière ou l'agriculture. (STSE, A)

Propriétés des ondes (PO)

L'élève devra :

20SP-PO.1 Explorer les propriétés et les caractéristiques des ondes à une, deux et trois dimensions dans au moins trois medias différents (p. ex. les ressorts, les cordes, l'air et l'eau).

- a. Se questionne sur la nature et la pertinence des ondes autour de nous, p. ex. Que sont les ondes ? Où trouve-t-on des ondes autour de nous ? Est-ce que toutes les ondes manifestent les mêmes propriétés ? Pourquoi les ondes sont-elles importantes à étudier ? (H, STSE, A)
- b. Examine différentes perspectives des Premières Nations et des Métis sur le concept d'onde, y compris l'onde comme porteuse d'énergie. (STSE, C)
- c. Reconnait que selon les scientifiques, l'onde est une transmission de l'énergie provenant d'une source de vibration déterminant la fréquence et l'amplitude de l'onde. (C)
- d. Utilise la terminologie appropriée des caractéristiques et propriétés des ondes lors des communications, y compris, milieu, impulsion, vibration, cycle, mouvement périodique, fréquence, période, amplitude, phase et longueur d'onde. (H, C)
- e. Reformule les questions sur les ondes sous forme de questions d'enquête, p.ex. Qu'est-ce qui détermine la fréquence d'une onde ? Qu'est-ce qui détermine la vitesse d'une onde ? Que se produit-il lorsque deux ondes ou plus se rencontrent ? (H, A)
- f. Identifie les caractéristiques des ondes transversales et longitudinales, y compris les crêtes (pouls positif), creux (impulsion négative), compressions, raréfaction ainsi que la relation entre la direction de la vibration et le transfert d'énergie. (C)
- g. Décrit les caractéristiques de la transmission des ondes, y compris la propagation rectiligne, la nature du milieu et sa relation avec la vitesse des ondes. (H, C)
- h. Trace l'évolution historique des technologies utilisées pour mesurer la vitesse de la lumière ou du son. (STSE)
- i. Résout des problèmes sur la vitesse, la fréquence et la longueur d'onde à l'aide de l'équation d'onde universelle () et du nombre de chiffres significatifs. (H, C)
- j. Illustre l'interférence constructive et destructive des ondes à une, deux et trois dimensions, y compris la superposition des ondes et les ondes stationnaires à l'aide de la source ponctuelle (point source) et des ondes rectilignes. (H, C)
- k. Observe et décrit la diffraction des ondes par l'interférence de la fente unique et double et des réseaux de difractions. (H C)
- I. Donne des exemples des propriétés et caractéristiques des ondes (p. ex. les ultrasons, le sonar, l'effet Doppler ou les bangs supersoniques) ou les radiations électromagnétique (p. ex. les antennes paraboliques, les microondes, les téléphones mobiles, les routeurs sans fil, Bluetooth, les ondes radio, les rayons X, le radar, les télécommandes) utilisées dans la technologie. (STSE, C)

- m. Explore les vibrations naturelles, les vibrations forcées, la résonance ou les harmoniques dans le contexte des instruments de musique et de l'ouïe humaine. (STSE, H, C)
- n. Examine des données, ou des résultats expérimentaux, pour appuyer la preuve de la théorie scientifique de la dualité onde-particules de la lumière. (STSE, H)

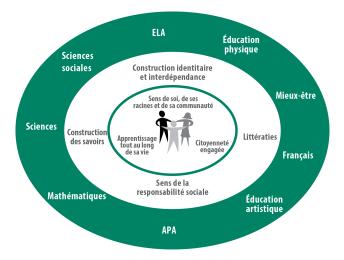
20SP-PO.2 Analyser, à partir de matériel de physique, de diagrammes de rayons et d'équations mathématiques, le rôle de diverses barrières dans la réflexion des ondes lumineuses et sonores.

- a. Étudie le comportement des vagues sur des barrières parallèle, oblique, courbes. (H, C)
- b. Compare les caractéristiques de différents types de réflexion, y compris la réflexion régulière, diffuse et réfléchie des ondes. (H, C)
- c. Démontre l'application de la loi de la réflexion quand la vague :
 - frappe une barrière droite;
 - rencontre la frontière entre deux milieux différents. (H, C)
- d. Donne des exemples d'ondes ou de réflexion d'ondes dans des situations de la vie de tous les jours, tels que l'écho, le radar, le sonar, les microphones paraboliques, l'ultrason, les vagues, les antennes paraboliques, les boules de billard, les sports de balle, etc. (STSE)
- e. Explore la formation d'image par des miroirs plans, concaves et convexes, y compris en dessinant des diagrammes de rayons. (H.C)
- f. Identifie les propriétés des images formées dans les miroirs plans concaves et convexes, y compris :
 - type (réel ou virtuel);
 - attitude / orientation (droite ou inversée);
 - grossissement (plus petite taille, plus grande taille ou de même taille);
 - position (par rapport à la surface du miroir ou par rapport a son sommet).
- g. Applique les lois de la réfraction et du grossissement ($M = h_i/h_o = -d_i/d_o$) et l'équation des miroirs courbés ($1/f = 1/d_o + 1/d_i$) pour résoudre des problèmes sur réflexion des ondes. (H, C)
- h. Décrit l'implication des technologies basées sur les ondes dans la détermination d'une compréhension scientifique des phénomènes comme .
 - la structure interne de la Terre;
 - la topographie du plancher océanique;
 - le cycle des roches. (STSE, C)

20SP-PO.3 Analyser la réfraction et la diffraction des ondes à la frontière entre des milieux différents, à partir: de matériel de physique; de diagrammes de rayons; d'équations mathématiques.

L'élève :

- a. Se question sur le comportement des ondes lors du passage d'un milieu à un autre. (C)
- b. Examine le comportement des ondes, y compris la réflexion et la réfraction partielle, l'angle critique, la réflexion interne totale et l'angle limite, à la frontière entre des milieux différents. (H, C)
- c. Établit des liens entre la réfraction et l'indice de réfraction d'un milieu, d'une part, et la vitesse et la direction de l'onde, d'autre part, à la frontière entre des milieux différents. (H, C)
- d. Explore la formation des images dans les lentilles convergentes et divergentes, y compris la représentation des diagrammes de rayons. (C)
- e. Détermine les propriétés d'une image formée dans les lentilles convergentes et divergentes, y compris :
 - le type (réel ou virtuel);
 - le sens le sens de l'image (droite ou renversée);
 - le grossissement (image plus petite, plus grande ou de même taille que l'objet);
 - la position (par rapport au centre optique). (C)


f. Applique les lois de/d':

- Snell-Descartes $n_1 \sin z_1 = n_2 \sin z_2$;
- équation de grossissement $M = h_i/h_o = -d_i/d_o$;
- équation des lentilles $1/f = 1/d_0 + 1/d_i$;
- pour résoudre des problèmes. (H, C)
- g. Explore les applications en lien avec les fibres optiques, les lentilles et la vision humaine, y compris la polarisation de la lumière, l'équation des lentilles et la réflexion interne totale. (STSE, H, C)

Les sciences et les autres matières

Le contexte fournit une signification, une pertinence et une utilité à l'apprentissage. L'élève qui apprend les sciences en contexte devient responsable de son apprentissage et engagé dans celui-ci. Il peut faire des liens avec son vécu et trouver l'apprentissage plus signifiant. Ces liens permettent également à l'élève de faire des liens entre les résultats d'apprentissage en sciences ainsi qu'entre les apprentissages en sciences et les autres matières. Plus l'élève fera l'expérience de liens variés et forts, plus son apprentissage sera approfondi.

Toute pensée est contextualisée! Donc l'élève qui vit un apprentissage et une évaluation contextualisés développe une compréhension plus approfondie, peut faire le transfert de ses connaissances et a un ancrage pour une étude interdisciplinaire.

Aperçu des deux niveaux scolaires

Sciences de la vie

9e année - La reproduction (RE)	Sciences 10
9RE.1 Décrire les fonctions de l'ADN, des gènes et des chromosomes dans la conservation et le transfert du matériel génétique. [PC, PD]	
9RE.2 Observer et décrire l'importance des processus de reproduction cellulaire, y compris la mitose et la méiose. [PC, EN]	
9RE.3 Décrire les processus et les conséquences de la reproduction sexuée et asexuée chez les plantes et les animaux. [EN]	
9RE.4 Analyser le processus de la reproduction humaine, y compris l'influence des techniques de reproduction et des méthodes de contraception. [EN, PD]	

Sciences physiques

9e année - Les atomes et les éléments (AE)	Sciences 10 - Réactions chimiques (RC)
9AE.1 Distinguer les propriétés physiques des propriétés chimiques de substances courantes, y compris celles qui ont des applications domestiques, commerciales, industrielles et agricoles. [EN]	10RC.1 Explorer les caractéristiques des réactions chimiques, y compris le rôle des changements d'énergie.
 9AE.2 Analyser l'historique des théories de la structure de la matière jusques et y compris : le modèle de Dalton; le modèle de Thomson; le modèle de Rutherford; le modèle de l'atome de Bohr. [EN] 	10RC.2 Examiner les formules et composés chimiques ioniques et moléculaires communs, à l'oral et à l'écrit, y compris les acides et les bases. [EN]
9AE.3 Montrer qu'il ou elle comprend la classification des substances pures (éléments et composés), y compris le développement et la nature du tableau périodique. [EN]	 10RC.3 Représenter les réactions chimiques et la loi de la conservation de la masse : symboliquement; à l'aide de modèles; à l'aide de mots; à l'aide d'équations squelettes et d'équations chimiques équilibrées. [PD, EN]
	10RC.4 Examiner la vitesse des réactions chimiques et les facteurs qui l'influencent. [EN]

9e année - Les caractéristiques de l'électricité (CE)	Sciences 10 - Force et mouvement dans notre monde (FM)
9CE.1 Démontrer et analyser les caractéristiques d'une charge électrostatique et de l'électricité dynamique. [PC, EN, RPT]	10FM.1 Explorer le développement des technologies reliées au mouvement et leurs effets sur soi et la société.
9CE.2 Analyser les rapports entre la tension, l'intensité et la résistance dans les circuits en série et en parallèle. [PC, EN, RPT]	10FM.2 Examiner le mouvement des objets qui se déplacent à une vitesse constante et dans un mouvement rectiligne.
9CE.3 Évaluer les principes de fonctionnement, le cout et l'efficacité de dispositifs qui produisent ou qui utilisent de l'énergie électrique. [EN, RPT]	10FM.3 Explorer le mouvement rectiligne d'objets uniformément accélérés.
9CE.4 Analyser les répercussions des méthodes de production et de distribution de l'énergie électrique à petite et grande échelle, utilisées dans le passé, présentement, et qui pourraient être utilisées à l'avenir en Saskatchewan. [PD, TK]	10FM.4 Analyser la relation entre les forces et le mouvement des objets à une dimension et à deux dimensions.

Sciences de la Terre et de l'espace

9e année - L'exploration de notre univers (EU)	Sciences 10 - Climat et dynamique des écosystèmes (CDE)
9EU.1 Étudier le mouvement et les caractéristiques des corps astronomiques de notre système solaire et de l'univers. [EN]	 10CDE.1 Évaluer les effets de l'activité humaine sur : la durabilité des écosystèmes; le climat local, régional et mondial.
9EU.2 Analyser les théories scientifiques élaborées pour expliquer la formation et l'évolution de notre système solaire et de l'univers. [EN]	10CDE.2 Examiner les divers mécanismes du système climatique de la Terre, y compris le rôle de l'effet de serre naturel.
9EU.3 Examiner comment diverses cultures, passées et présentes, y compris celles des Premières Nations et des Métis, comprennent ou représentent les phénomènes astronomiques. [PC]	10CDE.3 Examine la biodiversité par l'analyse des interactions entre les populations dans les communautés.
9EU.4 Analyser les moyens que possèdent les êtres humains pour explorer et comprendre l'univers, y compris les technologies et les programmes qui soutiennent cette exploration. [PD, RPT]	 10CDE.4 Spécifier le rôle des mécanismes de rétroaction dans : les cycles biogéochimiques; le maintien de la stabilité des écosystèmes.

Exploration de carrières (EC)

9e année	Sciences 10
	10EC.1 Explorer les choix de carrières de divers domaines et sous-domaines des sciences.

Lexique

Acide: Substance qui produit des ions hydrogènes lorsqu'on la dissout dans l'eau; composé qui, dissous dans l'eau, forme une solution ayant un pH inférieur à 7 (à 25

Base: Substance qui produit des ions hydrogènes lorsqu'on la dissout dans l'eau; composé qui, dissous dans l'eau, forme une solution ayant un pH supérieur à 7 (à 25.

Calorimètre: Appareil servant à la mesure des quantités de chaleur fournie ou cédées par le corps.

Capacité thermique ou capacité calorifique: Grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou restituer de l'énergie par un échange thermique au cours d'une transformation pendant laquelle sa température varie.

Caractéristiques des ondes : Quel que soit le type d'onde considéré, les ondes possèdent toutes cinq caractéristiques communes: longueur, fréquence, amplitude, période et vitesse.

Chaleur latente (ou enthalpie): Changement d'état d'une masse ou d'une quantité de matière. Quantité d'énergie qu'il faut communiquer à une masse ou une quantité de matière pour qu'elle passe de l'état initial (solide, liquide ou gazeux) à un autre état.

Chaleur massique de réaction : Quantité d'énergie absorbée ou dégagée lors de la transformation d'un gramme de réactif ou de la formation d'un gramme de produits.

Chaleur molaire de réaction : Quantité d'énergie absorbée ou dégagée lors de la transformation d'une mole de réactif ou de la formation d'une mole de produits.

Changements d'états de la matière : Transition de phase lors du passage d'un état de la matière à un autre. Les trois états principaux de la matière sont l'état solide, l'état liquide et l'état gazeux.

Énergie thermique: Quantité d'énergie que possède une substance en fonction de la quantité de particules qu'elle contient (sa masse) et de sa température. La chaleur est un transfert d'énergie thermique entre deux milieux de température différente, du milieu le plus chaud vers le milieu le plus froid.

Équation squelette : Équation dont les formules indiquent chacune des substances qui participent à une réaction chimique; elle ne donne pas les proportions exactes des réactifs et des produits.

États (ou phase) de la matière : Représentent les différentes formes sous lesquelles une substance peut exister dans la nature.

Masse molaire atomique d'un élément: Correspond à la masse de 6,023×1023 atomes de cet élément. Il s'agit de la masse atomique de l'élément indiquée dans le tableau périodique. Cette dernière est exprimée en grammes.

Masse molaire moléculaire d'un élément: Correspond à la masse de 6,023×1023 molécules de cette substance. Il s'agit de la somme des masses atomiques des éléments indiquées dans le tableau périodique. Cette dernière est également exprimée en grammes.

Mécanisme de rétroaction (positive et négative du système climatique de la Terre) : Les mécanismes de rétroactions peuvent amplifier le changement (rétroaction positive) ou freiner (rétroaction négative).

Molarité : Concentration d'un corps dissous dans un solvant. C'est le nombre de mole de ce corps dissous dans un solvant.

Mole: Unité de mesure de la quantité de matière. Une mole correspond à un paquet de 6,023×1023 particules.

Onde de propagation à une dimension: Phénomène de propagation à une dimension d'une perturbation sans transport de matériel; par exemple le cas d'une onde qui se propage le long d'une corde, le long d'une tige, ou d'une onde sonore qui se propage dans un tube ou sur un rail.

Onde de propagation à deux dimensions : Onde qui se propage dans un plan, par exemple les vagues à la surface de l'eau peuvent se propager dans un plan : celui de la surface de l'eau.

Onde de propagation à trois dimensions de l'espace : Selon la direction de la perturbation par rapport à la direction de propagation, on parle d'ondes longitudinales (mêmes direction) ou transversales (directions perpendiculaires); p. ex. dans l'air, le son se propage dans les trois dimensions de l'espace.

Réaction endothermique: Réaction chimique qui entraine une absorption de l'énergie.

Réaction exothermique : Réaction chimique qui libère de l'énergie, généralement sous forme de chaleur, de lumière ou d'électricité.

Sonde (ou capteur) de température : Dispositifs permettant de transformer l'effet du réchauffement ou du refroidissement sur leurs composants en signal électrique.

Stoechiométrie: Calcul qui permet d'analyser les quantités de réactifs et de produits qui sont en jeu au cours d'une réaction chimique. Elle sert surtout à calculer le nombre de moles et les masses en présence dans la réaction chimique.

Bibliographie

Aikenhead, G. S. (2006). Science education for everyday life: Evidence-based practice. New York, NY: Teachers College Press.

Alberta Education. (2005). Safety in the Science Classroom. AB: Auteur.

Brophy, J. & Alleman, J. (1991). A Caveat: Curriculum Integration Isn't Always a Good Idea. Educational Leadership, 49, 66.

Conseil canadien sur l'apprentissage. (2007). Redéfinir le mode d'évaluation de l'apprentissage chez le Autochtones. Rapport sur l'apprentissage au Canada 2007. Ottawa, ON: Auteur. http://www.ccl-

cca. ca/CCL/Reports/Redefining Success In Aboriginal Learning/Redefining Success Models-2. html.

Conseil international pour la science. (2002). ICSU Series on Science for Sustainable Development No 4: Science, traditional knowledge and sustainable development. Paris, France: Auteur.

Iscu.org/publications/reports_and_reviews/science_traditional_knowledge/science_traditional_knowledge.pdf. (Site consulté le 7 décembre 2014).

Conseil des ministres de l'Éducation, Canada. (2008). *Cadre commun des résultats d'apprentissage en sciences de la nature*. Disponible en ligne à http://publications.cmec.ca/science/framework/index.htm.

Conseil des ministres de l'Éducation, Canada. (1997). Cadre commun pancanadien des résultats d'apprentissage aux sciences M à 12. Toronto, ON: Auteur.

Copple, C. & Bredekamp, S. (Eds.). (2009). *Developmentally Appropriate Practice in Early Childhood Programs Serving Children from Birth Through Age 8 (3rd ed.)*. Washington, DC: National Association for the Education of Young Children.

Di Giuseppe, M. (Ed). (2007). *Science education: A summary of research, theories, and practice: A Canadian perspective*. Toronto, ON: Thomson Nelson.

Education Review Office. (1996). Science in Schools - Implementing the 1995 Science Curriculum (5). Wellington: Crown Copyright.

Flick, L. & Bell, R. (2000). *Preparing tomorrow's science teachers to use technology: Guidelines for science educators*. Contemporary Issues in Technology and Teacher Education, 1, 39-60.

International Technology Education Association. (2000). *Standards for technological literacy: Content for the study of technology*. Reston, VA: National Science Foundation.

Kluger-Bell, B. (2000). *Recognizing inquiry: Comparing three hands-on teaching techniques*. In Inquiry-Thoughts, Views, and Strategies for the K-5 Classroom (Foundations - A monograph for professionals in science, mathematics and technology education. Vol. 2). Washington, DC: National Science Foundation.

Kwan, T. & Texley, J. (2003). Inquiring Safely: A Guide for Middle School Teachers. Arlington, VA: NSTA Press.

Ministère de l'Éducation de la Saskatchewan. (2009). *Tronc commun : Principes, répartition de temps et allocation des crédits pour les écoles fransaskoises*. Regina : Ministère de l'Éducation de la Saskatchewan. Disponible en ligne à http://education.gov.sk.ca/tronc-commun-pour-les-ecoles-fransaskoises (Site consulté le 7 février 2013).

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2000). *Inquiry and the national science education standards: A guide for teaching and learning.*Washington, DC: National Academy Press.

National Research Council. (2006). *America's lab report: Investigations in high school science*. Washington, DC: National Academy Press.

National Science Teachers Association. (1999). *NSTA position statement: Science competitions*. Retrieved from http://www.nsta.org/about/positions/competitions.aspx.

National Science Teachers Association. (2007). *NSTA position statement: The integral role of laboratory investigations in science instruction*. Retrieved from http://www.nsta.org/about/positions/laboratory.aspx.

National Science Teachers Association. (2008). *NSTA position statement: Responsible use of live animals and dissection in the science classroom*. Retrieved from http://www.nsta.org/about/positions/animals.aspx.